Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Membrane type 1 matrix metalloproteinase is a member of the membrane-anchored matrix metalloproteinase family and is involved in tissue remodeling events ranging from tumor invasion and angiogenesis to growth and development. We sought to clarify the role of membrane type 1 matrix metalloproteinase in cutaneous epidermal cells using anti-sense cDNA expression in human keratinocytes. Modulation of membrane type 1 matrix metalloproteinase transcript and protein levels was achieved via retroviral expression of a 5' 1.4 kb anti-sense membrane type 1 matrix metalloproteinase construct and a 3.4 kb full-length sense membrane type 1 matrix metalloproteinase construct in primary and immortalized keratinocytes and SCC-25 cells. Maximal reductions were observed 48-72 h after transduction with 1.4 kb anti-sense membrane type 1 matrix metalloproteinase construct that correlated with significant decreased pro-matrix metalloproteinase-2 activation. Functionally, we found decreased cell migration, reduced cellular proliferation, and increased apoptotic nuclear fragmentation after 1.4 kb anti-sense membrane type 1 matrix metalloproteinase construct expression. Our findings suggest a role for membrane type 1 matrix metalloproteinase in human cutaneous epidermal cell invasion and survival mechanisms in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1523-1747.2002.01713.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!