Evaluation of a commercially available immunoassay for assessing adequacy of passive transfer in calves.

J Am Vet Med Assoc

Department of Veterinary Medicine and Surgery College of Veterinary Medicine, University of Missouri, Columbia 65211, USA.

Published: March 2002

Objective: To evaluate diagnostic utility of a commercially available immunoassay for assessing adequacy of passive transfer of immunity in neonatal calves.

Design: Prospective study.

Animals: 123 calves.

Procedure: Blood and serum samples were obtained from the calves prior to 2 weeks of age. The immunoassay was performed, along with refractometry and an 18% sodium sulfite turbidity test. Serum IgG concentration was determined with a radial immunodiffusion assay. Sensitivity and specificity of the immunoassay, refractometry, and the sodium sulfite test were calculated by comparing results with results of the radial immunodiffusion assay.

Results: Sensitivity and specificity of the blood IgG immunoassay were 0.93 and 0.88, respectively, compared with 1.00 and 0.53 for the sodium sulfite test. For refractometry, sensitivity and specificity were 0.71 and 0.83, respectively, when a serum total solids concentration of 5.2 g/dl was used as the cutoff between positive and negative test results.

Conclusions And Clinical Relevance: Results suggest that the immunoassay performs well in detecting calves with inadequate passive transfer of immunity.

Download full-text PDF

Source
http://dx.doi.org/10.2460/javma.2002.220.791DOI Listing

Publication Analysis

Top Keywords

passive transfer
12
sodium sulfite
12
sensitivity specificity
12
commercially immunoassay
8
immunoassay assessing
8
assessing adequacy
8
adequacy passive
8
transfer immunity
8
radial immunodiffusion
8
sulfite test
8

Similar Publications

In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions.

View Article and Find Full Text PDF

A Framework for Comprehensive Dairy Calf Health Investigations.

Animals (Basel)

January 2025

Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada.

The objective of this narrative review is to provide a systematic framework for veterinarians to investigate dairy calf health, focusing on critical control points and key performance indicators (KPIs) to address morbidity and mortality challenges in preweaned calves. Recommendations target prenatal maternal nutrition, heat stress abatement, and optimal calving management to minimize risks associated with perinatal mortality and preweaning morbidity. Further, comprehensive colostrum management is discussed to ensure excellent transfer of passive immunity, which includes prompt collection and feeding within two hours of birth at a volume of 8.

View Article and Find Full Text PDF

The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.

View Article and Find Full Text PDF

Breast milk delivery of an engineered dimeric IgA protects neonates against rotavirus.

Mucosal Immunol

January 2025

Weill Cornell Medicine Department of Pediatrics, Division of Infectious Disease, New York, NY, USA. Electronic address:

Dimeric IgA (dIgA) is the dominant antibody in many mucosal tissues. It is actively transported onto mucosal surfaces as secretory IgA (sIgA) which plays an integral role in protection against enteric pathogens, particularly in young children. Therapeutic strategies that deliver engineered, potently neutralizing antibodies directly into the infant intestine through breast milk could provide enhanced antimicrobial protection for neonates.

View Article and Find Full Text PDF

Diphtheria antitoxin treatment: from pioneer to neglected.

Mem Inst Oswaldo Cruz

January 2025

Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.

Diphtheria, a severe respiratory infection, was a major killer of children until the early years of the 20th century. Although diphtheria is now largely controlled globally thanks to vaccination, it is still endemic in some world regions and large epidemics can occur where vaccination coverage is insufficient. The pathological effects caused by its main virulence factor, diphtheria toxin, can be diminished by passive transfer of antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!