Previous observations that vitamin D hormone induces the expression of the receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL), thereby stimulating osteoclastogenesis in vitro, led to the widespread belief that 1alpha,25-dihydroxyvitamin D3 [1a,25(OH)2D3] is a bone-resorbing hormone. Here, we show that alfacalcidol, a prodrug metabolized to 1alpha,25(OH)2D3, suppresses bone resorption at pharmacologic doses that maintain normocalcemia in an ovariectomized (OVX) mouse model of osteoporosis. Treatment of OVX mice with pharmacologic doses of alfacalcidol does not increase RANKL expression, whereas toxic doses that cause hypercalcemia markedly reduce the expression of RANKL. When bone marrow (BM) cells from OVX mice were cultured with sufficient amounts of macrophage colony-stimulating factor (M-CSF) and RANKL, osteoclastogenic activity was higher than in sham mice. Marrow cultures from alfacalcidol- or estrogen-treated OVX mice showed significantly less osteoclastogenic potential compared with those from vehicle-treated OVX mice, suggesting that the pool of osteoclast progenitors in the marrow of vitamin D-treated mice as well as estrogen-treated mice was decreased. Frequency analysis showed that the number of osteoclast progenitors in bone marrow was increased by OVX and decreased by in vivo treatment with alfacalcidol or estrogen. We conclude that the pharmacologic action of active vitamin D in vivo is to decrease the pool of osteoclast progenitors in BM, thereby inhibiting bone resorption. Because of its unusual activity of maintaining bone formation while suppressing bone resorption, in contrast to estrogens that depress both processes, vitamin D hormone and its bone-selective analogs may be useful for the management of osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1359/jbmr.2002.17.4.622DOI Listing

Publication Analysis

Top Keywords

ovx mice
16
vitamin hormone
12
pool osteoclast
12
bone marrow
12
bone resorption
12
osteoclast progenitors
12
pharmacologic doses
8
bone
7
mice
7
ovx
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!