The HNH motif was originally identified in the subfamily of HNH homing endonucleases, which initiate the process of the insertion of mobile genetic elements into specific sites. Several bacteria toxins, including colicin E7 (ColE7), also contain the 30 amino acid HNH motif in their nuclease domains. In this work, we found that the nuclease domain of ColE7 (nuclease-ColE7) purified from Escherichia coli contains a one-to-one stoichiometry of zinc ion and that this zinc-containing enzyme hydrolyzes DNA without externally added divalent metal ions. The apo-enzyme, in which the indigenous zinc ion was removed from nuclease-ColE7, had no DNase activity. Several divalent metal ions, including Ni2+, Mg2+, Co2+, Mn2+, Ca2+, Sr2+, Cu2+ and Zn2+, re-activated the DNase activity of the apo-enzyme to various degrees, however higher concentrations of zinc ion inhibited this DNase activity. Two charged residues located at positions close to the zinc-binding site were mutated to alanine. The single-site mutants, R538A and E542A, showed reduced DNase activity, whereas the double-point mutant, R538A + E542A, had no observable DNase activity. A gel retardation assay further demonstrated that the nuclease-ColE7 hydrolyzed DNA in the presence of zinc ions, but only bound to DNA in the absence of zinc ions. These results demonstrate that the zinc ion in the HNH motif of nuclease-ColE7 is not required for DNA binding, but is essential for DNA hydrolysis, suggesting that the zinc ion not only stabilizes the folding of the enzyme, but is also likely to be involved in DNA hydrolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC101835PMC
http://dx.doi.org/10.1093/nar/30.7.1670DOI Listing

Publication Analysis

Top Keywords

zinc ion
24
dnase activity
20
hnh motif
16
dna hydrolysis
12
zinc
8
ion hnh
8
dna
8
required dna
8
dna binding
8
binding essential
8

Similar Publications

Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.

Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.

View Article and Find Full Text PDF

Fabricating ZnO@C composites based on shell-derived cellulose for high performance lithium-ion battery anodes.

Heliyon

December 2024

Department of Chemical, Biological & Battery Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.

In this study, shell-derived cellulose was successfully produced, and the hydrothermal method was employed to generate ZnO@C (ZOC) composites, which were then subjected to calcination in N gas at a temperature of 600 °C for varying durations. X-ray diffraction and thermogravimetric analyses demonstrated that the annealing duration had a substantial impact on the quantities of C and ZnO in the ZOC composites. The scanning electron microscope images indicated the presence of ZnO nanoparticles on the surface of the C phase and revealed a similar morphology among the ZOC composites.

View Article and Find Full Text PDF

Zn transport across neuronal membranes relies on two classes of transition metal transporters: the ZnT (SLC30) and ZIP (SLC39) families. These proteins function to decrease and increase cytosolic Zn levels, respectively. Dysfunction of ZnT and ZIP transporters can alter intracellular Zn levels resulting in deleterious effects.

View Article and Find Full Text PDF

Allosteric regulation is a widespread strategy employed by several proteins to transduce chemical signals and perform biological functions. Metal sensor proteins are exemplary in this respect, e.g.

View Article and Find Full Text PDF

Recent Advances in Current Collectors for Aqueous Zinc-ion Batteries.

Chem Rec

January 2025

Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China.

Aqueous zinc-ion batteries (AZIBs) are promising options for large-scale electrical energy storage because of their safety, affordability, and environmental friendliness. As an indispensable component of AZIBs, a current collector plays a crucial role in supporting electrode materials and collecting the accumulated electrical energy. Recently, some progress has been made in the study of current collectors for AZIBs; however, only few comprehensive reviews on this topic are available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!