Background: Several findings in humans support the hypothesis of links between n-3 polyunsaturated fatty acid (PUFA) status and psychiatric diseases.
Objective: The involvement of PUFAs in central nervous system function can be assessed with the use of dietary manipulation in animal models. We studied the effects of chronic dietary n-3 PUFA deficiency on mesocorticolimbic dopamine neurotransmission in rats.
Design: Using dual-probe microdialysis, we analyzed dopamine release under amphetamine stimulation simultaneously in the frontal cortex and the nucleus accumbens. The messenger RNA (mRNA) expression of vesicular monoamine transporter(2) and dopamine D(2) receptor was studied with the use of in situ hybridization. The protein expression of the synthesis-limiting enzyme tyrosine 3-monooxygenase (tyrosine 3-hydroxylase) was studied with the use of immunocytochemistry.
Results: Dopamine release was significantly lower in both cerebral areas in n-3 PUFA-deficient rats than in control rats, but this effect was abolished in the frontal cortex and reversed in the nucleus accumbens by reserpine pretreatment, which depletes the dopamine vesicular storage pool. The mRNA expression of vesicular monoamine transporter(2) was lower in both cerebral areas in n-3 PUFA-deficient rats than in control rats, whereas the mRNA expression of D(2) receptor was lower in the frontal cortex and higher in the nucleus accumbens in n-3 PUFA-deficient rats than in control rats. Finally, tyrosine 3-monooxygenase immunoreactivity was higher in the ventral tegmental area in n-3 PUFA-deficient rats than in control rats.
Conclusions: Our results suggest that the mesolimbic dopamine pathway is more active whereas the mesocortical pathway is less active in n-3 PUFA-deficient rats than in control rats. This provides new neurochemical evidence supporting the effects of n-3 PUFA deficiency on behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ajcn/75.4.662 | DOI Listing |
J Sci Food Agric
October 2024
College of Food Science and Engineering, Ocean University of China, Qingdao, China.
Behav Neurosci
October 2024
Department of Behavioral Neuroscience, Oregon Health and Science University.
Dietary maternal deficiency in omega-3 polyunsaturated fatty acids (n-3 PUFA) is a potential risk factor for the development of anxiety and other mood disorders in children and adolescents. Here, we used a previously characterized maternal PUFA dietary deficiency model in rats to determine the impact of postweaning supplementation on adolescent anxiety-like behaviors. We focused on two models of anxiety: innate anxiety tested by the elevated plus maze and a novel operant model of learned anxiety where animals learn that actions may be associated with a variable probability of harm.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
April 2023
Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India. Electronic address:
Maternal n-3 PUFA (omega-3) deficiency can affect brain development in utero and postnatally. Despite the evidence, the impacts of n-3 PUFA deficiency on the expression of neurogenesis genes in the postnatal hippocampus remained elusive. Since postnatal brain development requires PUFAs via breast milk, we examined the fatty acid composition of breast milk and hippocampal expression of neurogenesis genes in n-3 PUFA deficient 21d mice.
View Article and Find Full Text PDFFront Nutr
December 2022
Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, National Center for Children's Health, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.
Background: This study determined the effects of the paternal dietary ratio of n-6: n-3 polyunsaturated fatty acids (PUFAs) on leptin expression in the offspring and associated gene imprinting in a mouse model.
Methods: Three- to four-week-old male C57BL/6J mice (F0) were fed an n-3 PUFA-deficient (n-3 D) diet, a diet with normal n-3 PUFA content (n-3 N; n-6: n-3 = 4.3:1), or a diet with a high n-3 PUFA content (n-3 H; n-6: n-3 = 1.
Front Nutr
October 2022
Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
Recent studies demonstrate that paternal nutrition prior to conception may determine offspring development and health through epigenetic modification. This study aims to investigate the effects of paternal supplementation of n-3 polyunsaturated fatty acids (n-3 PUFAs) on the brain development and function, and associated gene imprinting in the offspring. Three to four-week-old male C57BL/6J mice (founder) were fed with an n-3 PUFA-deficient diet (n-3 D), and two n-3 PUFA supplementation diets - a normal n-3 PUFA content diet (n-3 N) and a high n-3 PUFA content diet (n-3 H) for 12 weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!