Task-related changes in the corticospinal excitation of the right extensor carpi radialis (ECR) muscle were investigated in 16 healthy human subjects. The subjects were asked to perform a tonic isometric wrist extension or to clench their hand around a manipulandum, thereby coactivating the antagonistic wrist muscles. At matched levels of background EMG in the ECR muscle, transcranial magnetic stimulation (TMS) was applied through a figure-of-eight coil at 20-30 sites spaced 1 cm apart over the hand area of the left motor cortex. The cortical maps of the representation of the ECR muscle constructed in this way did not change between the two motor tasks. Nevertheless, for all investigated cortical sites TMS evoked a smaller motor evoked potential (MEP) in the ECR muscles during hand clenching than during wrist extension. A similar decrease in the short-latency peak in the poststimulus time histogram (PSTH) of single ECR motor units to TMS during hand clenching was found in seven subjects (number of motor units = 35). In contrast, short-latency peaks in the PSTH evoked by electrical stimulation of the motor cortex had a similar size during the two tasks (number of motor units = 9; two subjects). Already the initial 0.5-1.0 ms of the short-latency peak evoked by TMS was depressed during hand clenching, which suggests that decreased excitability of corticospinal cells with monosynaptic projections onto ECR motor units was involved. This decreased excitability was not explained by increased intracortical inhibition, which was found to be of a similar size during hand clenching and wrist extension. The task-related changes in the efficiency of the motor cortex output are discussed in relation to the function of the wrist antagonist muscles in handling and gripping tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-002-1010-3 | DOI Listing |
J Neural Eng
January 2025
West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
. Brain-computer interface(BCI) is leveraged by artificial intelligence in EEG signal decoding, which makes it possible to become a new means of human-machine interaction. However, the performance of current EEG decoding methods is still insufficient for clinical applications because of inadequate EEG information extraction and limited computational resources in hospitals.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2024
Department of Orthopedics, Department of Hand Surgery, Qilu Hospital of Shandong University, Jinan, China.
Objectives: This work aimed to study the long-term outcome and function of a heterotopic replanted finger.
Methods: Retrospective analysis of two cases of successful finger reconstruction after finger heterotopic replantation. One case was a severed thumb, and the other case was a severed finger.
Wearable Technol
November 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
Stroke causes neurological and physical impairment in millions of people around the world every year. To better comprehend the upper-limb needs and challenges stroke survivors face and the issues associated with existing technology and formulate ideas for a technological solution, the authors conversed with 153 members of the ecosystem (60 neuro patients, 30 caregivers, and 63 medical providers). Patients fell into two populations depending on their upper-limb impairment: spastic (stiff, clenched hands) and flaccid (limp hands).
View Article and Find Full Text PDFNeuroimage
December 2024
Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, PR China. Electronic address:
Background: The rapid development of neurosurgical techniques, such as awake craniotomy, has increased opportunities to explore the mysteries of the brain. This is crucial for deepening our understanding of motor control and imagination processes, especially in developing brain-computer interface (BCI) technologies and improving neurorehabilitation strategies for neurological disorders.
Objective: This study aimed to analyze brain activity patterns in patients undergoing awake craniotomy during actual movements and motor imagery, mainly focusing on the motor control processes of the bilateral limbs.
Arch Clin Cases
October 2024
Department of Internal Medicine, Monmouth Medical Center, Long Branch, NJ, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!