Aims/hypothesis: We assessed how the role of genes genetic causation in causing maturity-onset diabetes of the young (MODY) alters the response to an oral glucose tolerance test (OGTT).
Methods: We studied OGTT in 362 MODY subjects, from seven European centres; 245 had glucokinase gene mutations and 117 had Hepatocyte Nuclear Factor -1 alpha ( HNF-1alpha) gene mutations.
Results: BMI and age were similar in the genetically defined groups. Fasting plasma glucose (FPG) was less than 5.5 mmol/l in 2 % glucokinase subjects and 46 % HNF-1 alpha subjects ( p < 0.0001). Glucokinase subjects had a higher FPG than HNF-1 alpha subjects ([means +/- SD] 6.8 +/- 0.8 vs 6.0 +/- 1.9 mmol/l, p < 0.0001), a lower 2-h value (8.9 +/- 2.3 vs 11.2 +/- 5.2 mmol/l, p < 0.0001) and a lower OGTT increment (2-h - fasting) (2.1 +/- 2.3 vs 5.2 +/- 3.9 mmol/l, p < 0.0001). The relative proportions classified as diabetic depended on whether fasting (38 % vs 22 %, glucokinase vs HNF-1 alpha) or 2-h values (19 % vs 44 %) were used. Fasting and 2-h glucose values were not correlated in the glucokinase subjects ( r = -0.047, p = 0.65) but were strongly correlated in HNF-1 alpha subjects ( r = 0.8, p < 0.001). Insulin concentrations were higher in the glucokinase subjects throughout the OGTT.
Conclusion/interpretation: The genetic cause of the beta-cell defect results in clear differences in both the fasting glucose and the response to an oral glucose load and this can help diagnostic genetic testing in MODY. OGTT results reflect not only the degree of hyperglycaemia but also the underlying cause.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00125-001-0770-9 | DOI Listing |
Diabetes Res Clin Pract
November 2024
College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, PO Box 34110, Doha, Qatar. Electronic address:
Glucagon-like peptide-1 (GLP-1) agonists and GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists are major treatment options for subjects with obesity and patients with type 2 diabetes mellitus (T2DM). They counter without addressing the mechanistic cause of the impaired incretin effect associated with obesity and T2DM. Incretin effect impairment is characterized by decreased secretion of incretins from enteroendocrine cells and incretin resistance of pancreatic β-cells.
View Article and Find Full Text PDFCureus
September 2024
Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA.
There is a growing field of research focusing on the bioinformatic analysis of human genetic variation and the associated diseases. To study how well in vitro testing of purified proteins compares to bioinformatic variant prediction, we chose to analyze glucokinase (GCK) missense variations between residues 119-132, 257-262, and 412-427. These regions contained a large number of variants of uncertain significance (VUS) as well as a few pathogenic variants to use for comparison.
View Article and Find Full Text PDFDiabetes Obes Metab
December 2024
Department of Medicine, University of Verona, Verona, Italy.
Aim: The aim was to examine the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), a risk factor for atherosclerotic cardiovascular disease, and its association with glycaemic control metrics in children and adolescents with type 1 diabetes (T1D).
Materials And Methods: We enrolled 244 children and adolescents with T1D (115 girls, mean age: 16.2 ± 3.
Pharm Pat Anal
September 2024
Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Jalandhar-Delhi G.T. Road, Punjab, 144411, India.
The glucokinase enzyme (belongs to the hexokinase family) is present in liver cells and β-cells of the pancreas. Glucokinase acts as a catalyst in the conversion of glucose-6-phosphate from glucose which is rate-limiting step in glucose metabolism. Glucokinase becomes malfunctional or remains inactivated in diabetes.
View Article and Find Full Text PDFBMJ Open Diabetes Res Care
August 2024
University of Gävle, Gavle, Sweden
The prevalence of type 2 diabetes (T2D) is increasing relentlessly all over the world, in parallel with a similar increase in obesity, and is striking ever younger patients. Only a minority of patients with T2D attain glycemic targets, indicating a clear need for novel antidiabetic drugs that not only control glycemia but also halt or slow the progressive loss of β-cells. Two entirely novel classes of antidiabetic agents-glucokinase activators and imeglimin-have recently been approved and will be the subject of this review.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!