Mts1, also known as S100A4, is an 11 kDa calcium-binding protein strongly linked to metastasis. As a member of the S100 protein family, Mts1 is predicted to contain four alpha-helices and two calcium-binding loops, the second of which forms a canonical EF hand, while the first is a pseudo-EF hand, using two extra residues and principally backbone carbonyls rather than side chain oxygens to coordinate calcium. Here we follow chemical shift changes which occur in Mts1 upon titration of calcium. The results are consistent with calcium coordination by the EF hands described above. Filling of the first (pseudo) EF hand occurs at a lower calcium concentration than does filling of the second (canonical) EF hand. Concurrent with filling of site I, resonances from much of helix 4 vanish while the chemical shifts of a possibly nascent helical segment immediately C-terminal to helix 4 increase in helical character. Other smaller changes are seen, including a change in the linker joining helix 2 and helix 3. Since binding of effector molecules to S100 proteins has been shown to involve the C-terminus and linker regions, these calcium-induced changes have implications for the role of Mts1 in metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi012061v | DOI Listing |
Protein Sci
February 2025
Department of Physics, University of Washington, Seattle, Washington, USA.
Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.
Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
CELLS-ALBA Synchrotron Light Facility, Cerdanyola del Vallés, 08290, Barcelona, Spain.
Magnesium and calcium carbonate minerals are significant reservoirs of Earth's carbon and understanding their behavior under different conditions is crucial for elucidating the mechanisms of deep carbon storage. Huntite, MgCa(CO), is one of the two stable calcium magnesium carbonate phases, together with dolomite. The distinctive cation coordination environment of Ca atoms compared to calcite-type and dolomite structures makes huntite a comparatively less dense phase.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
Objective: The expanding field of hematopoietic cell transplantation (HCT) for non-malignant diseases, including those amenable to gene therapy or gene editing, faces challenges due to limited donor availability and the toxicity associated with cell collection methods. Umbilical cord blood (CB) represents a readily accessible source of hematopoietic stem and progenitor cells (HSPCs); however, the cell dose obtainable from a single cord blood unit is frequently insufficient. This limitation can be addressed by enhancing the potency of HSPCs, specifically their capacity to reconstitute hematopoiesis.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India.
Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca homeostasis to prevent excitotoxicity and support synaptic neurotransmission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!