Modular design of a novel chimeric protein with combined thrombin inhibitory activity and plasminogen-activating potential.

Mol Genet Metab

Abteilung fuer Molekulare Genetik und Praeparative Molekularbiologie, Institut fuer Mikrobiologie und Genetik, Grisebachstrasse 8, 37077 Goettingen, Germany.

Published: March 2002

In order to design plasminogen activators with improved thrombolytic properties we sought to construct the bifunctional protein HLS-2 which combines both a plasminogen-activating and an anticoagulative activity. The chimeric protein comprises four elements: a derivative of thrombin inhibitor hirudin, a 6-amino acid spacer, the sequence of plasminogen-activator staphylokinase (Sak), and a 13-amino acid expression tag at the C-terminus. The gene of the fusion protein was obtained by SOE-PCR, cloned into pCANTAB5E, and expressed in E. coli BL21. HLS-2 was purified from periplasmatic extracts and characterized by Western blotting. Plasminogen-activation of HLS-2 and of Sak in equimolar mixtures with plasminogen showed near equivalence as measured by plasmin-mediated cleavage of chromogenic substrate S-2403. For catalytic amounts of plasminogen-activator, however, HLS-2 was less effective by a factor of 1.7. HLS-2 also inhibited both the amidolytic and the fibrinolytic activities of thrombin. Similar concentrations of either commercial HV1 (42 pmol/L) or HLS-2 (250 pmol/L) were required to halve the initial rate of thrombin reaction with fluorogenic substrate Tos-Gly-Pro-Arg-AMC, suggesting the retention of high-affinity inhibition of thrombin by the fusion protein sufficiently strong to substitute anticoagulative comedication during fibrinolytic treatment. The results provide a rationale for further testing the efficacy of HLS-2 for the lysis of platelet-rich arterial blood clots and for the prevention of reocclusion after thrombolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1006/mgme.2001.3292DOI Listing

Publication Analysis

Top Keywords

chimeric protein
8
fusion protein
8
hls-2
7
protein
5
thrombin
5
modular design
4
design novel
4
novel chimeric
4
protein combined
4
combined thrombin
4

Similar Publications

The capsid proteins of many viruses are capable of spontaneous self-assembly into virus-like particles (VLPs), which do not contain the viral genome and are therefore not infectious. VLPs are structurally similar to their parent viruses and are therefore effectively recognized by the immune system and can induce strong humoral and cellular immune responses. The structural features of VLPs make them an attractive platform for the development of potential vaccines and diagnostic tools.

View Article and Find Full Text PDF

Non-fermenting Gram-negative bacteria are resistant to most antibiotics, due to the production of enzymes such as NDM-1. Faced with this challenge, computational methods have become essential for the design of NDM-1 carbapenemase inhibitors, optimizing both the time and cost of the development of new lead molecules. In this study, molecular docking and molecular dynamics (MD) simulations were performed in order to identify effective inhibitors against the NDM-1 enzyme.

View Article and Find Full Text PDF

An Evaluation of the Cellular and Humoral Response of a Multi-Epitope Vaccine Candidate Against COVID-19 with Different Alum Adjuvants.

Pathogens

December 2024

Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Aeropuerto, Carretera a Chichimequillas, Ejido Bolaños, Querétaro 76140, Mexico.

SARS-CoV-2 () is responsible for the disease identified by the World Health Organization (WHO) as COVID-19. We designed "CHIVAX 2.1", a multi-epitope vaccine, containing ten immunogenic peptides with conserved B-cell and T-cell epitopes in the receceptor binding domain (RBD) sequences of different SARS-CoV-2 variants of concern (VoCs).

View Article and Find Full Text PDF

Translocation: A Common Tumor Driver of Distinct Human Neoplasms.

Int J Mol Sci

December 2024

School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.

Cancer is among the leading causes of mortality in developed countries due to limited available therapeutic modalities and high rate of morbidity. Although malignancies might show individual genetic landscapes, recurring aberrations in the neoplastic genome have been identified in the wide range of transformed cells. These include translocations of frequently affected loci of the human genetic material like the Ewing sarcoma breakpoint region 1 () of chromosome 22 that results in malignancies with mesodermal origin.

View Article and Find Full Text PDF

Current Non-Viral-Based Strategies to Manufacture CAR-T Cells.

Int J Mol Sci

December 2024

Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany.

The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their safety. To date, all approved CAR-T cell products have relied on viral-based gene delivery and genomic integration methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!