Very large data sets of molecules screened against a broad range of targets have become available due to the advent of combinatorial chemistry. This information has led to the realization that ADME (absorption, distribution, metabolism, and excretion) and toxicity issues are important to consider prior to library synthesis. Furthermore, these large data sets provide a unique and important source of information regarding what types of molecular shapes may interact with specific receptor or target classes. Thus, the requirement for rapid and accurate data mining tools became paramount. To address these issues Pharmacopeia, Inc. formed a computational research group, The Center for Informatics and Drug Discovery (CIDD).* In this review we cover the work done by this group to address both in silico ADME modeling and data mining issues faced by Pharmacopeia because of the availability of a large and diverse collection (over 6 million discrete compounds) of drug-like molecules. In particular, in the data mining arena we discuss rapid docking tools and how we employ them, and we describe a novel data mining tool based on a ID representation of a molecule followed by a molecular sequence alignment step. For the ADME area we discuss the development and application of absorption, blood-brain barrier (BBB) and solubility models. Finally, we summarize the impact the tools and approaches might have on the drug discovery process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.1164 | DOI Listing |
Sci Rep
January 2025
Information Institute of the Ministry of Emergency Management of PR China, Beijing, 100029, People's Republic of China.
Slopes influenced by multiple faults are prone to large-scale landslides triggered by multi-regional failures. Understanding the failure process and sequence is essential for the sustainable development of mining operations. This paper presents a method combining InSAR monitoring and numerical simulation to analyze the failure processes of slopes affected by multiple faults.
View Article and Find Full Text PDFViruses
January 2025
Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina.
The European grapevine moth () poses a significant threat to vineyards worldwide, causing extensive economic losses. While its ecological interactions and control strategies have been well studied, its associated viral diversity remains unexplored. Here, we employ high-throughput sequencing data mining to comprehensively characterize the virome, revealing novel and diverse RNA viruses.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Canakinumab, a humanized anti-IL-1β monoclonal antibody, is known for its ability to suppress IL-1β-mediated inflammation. However, continuous monitoring of its safety remains essential. Thus, we comprehensively evaluated the safety signals of canakinumab by data mining from FAERS.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.
Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Communication and Information Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
Artificial intelligence (AI), particularly through advanced large language model (LLM) technologies, is reshaping coal mine safety assessment methods with its powerful cognitive capabilities. Given the dynamic, multi-source, and heterogeneous characteristics of data in typical mining scenarios, traditional manual assessment methods are limited in their information processing capacity and cost-effectiveness. This study addresses these challenges by proposing an embodied intelligent system for mine safety assessment based on multi-level large language models (LLMs) for multi-source sensor data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!