Previous studies have demonstrated that trophic hormone stimulation induced cyclic AMP (cAMP) formation and arachidonic acid (AA) release from phospholipids and that both these compounds were required for steroid biosynthesis and steroidogenic acute regulatory (StAR) gene expression in MA-10 mouse Leydig tumor cells. The present study further investigates the synergistic effects of the AA and cAMP interaction on steroidogenesis. To demonstrate cAMP-induced AA release, MA-10 cells were pre-loaded with 3H-AA and subsequently treated with dibutyryl cyclic AMP (dbcAMP). Stimulation with dbcAMP significantly induced AA release in MA-10 cells to a level 145.7% higher than that of controls. Lowering intracellular cAMP concentration by expressing a cAMP-phosphodiesterase significantly reduced human chorionic gonadotrophin (hCG)-induced AA release. The dbcAMP-induced AA release was inhibited significantly by the phospholipase A(2) (PLA(2)) inhibitor dexamethasone (Dex) and also by the protein kinase A (PKA) inhibitor H89, suggesting the involvement of PKA phosphorylation and/or PLA(2) activation in cAMP-induced AA release. The effect of the interaction between AA and cAMP on StAR gene expression and steroid production was also investigated. While 0.2 mM dbcAMP induced only very low levels of StAR protein, StAR mRNA, StAR promoter activity and steroid production, all of these parameters increased dramatically as AA concentration in the culture medium was increased from 0 to 200 microM. Importantly, AA was not able to induce a significant increase in steroidogenesis at any concentration when used in the absence of dbcAMP. However, when used in concert with submaximal concentrations of dbcAMP (0.05 mm to 0.5 mm), AA was capable of stimulating StAR gene expression and increasing steroid production significantly. The results from this study demonstrate that AA and cAMP act in a highly synergistic manner to increase the sensitivity of steroid production to trophic hormone stimulation and probably do so by increasing StAR gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0303-7207(01)00748-1 | DOI Listing |
Clin Pharmacol Ther
January 2025
Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Clopidogrel, an anti-platelet drug, is used to prevent thrombosis after percutaneous coronary intervention. Clopidogrel resistance results in recurring ischemic events, with African Americans (AA) suffering disproportionately. The aim of this study was to discover novel biomarkers of clopidogrel resistance in African Americans using genome and transcriptome data.
View Article and Find Full Text PDFJ Am Coll Surg
January 2025
Department of Surgery, University of Kentucky Medical Center, Lexington, KY.
Background: Colon cancer is a leading cause of mortality in Appalachian Kentucky. Studies suggest that the microbiome may influence cancer outcomes. We investigate differential gene expression, the tumor microbiome, and the association between the two as potential drivers of disparities in colon cancer outcomes.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Emerging evidence demonstrates that inducing ferroptosis, a nonapoptotic programmed cell death mode, holds significant potential for tumor treatment. However, current ferroptosis strategies utilizing exogenous Fenton-type heavy metal species or introducing glutathione (GSH)/glutathione peroxidase 4 (GPX4) suppressants are hampered by latent adverse effects toward organisms, while utilizing endogenous iron may cause undesirable tumor angiogenesis through specific signaling pathways. Here, a ferric ion (Fe)-responsive and DNAzyme-delivered coordination nanosystem (ZDD) is developed to achieve a novel scheme of synergistic tumor-specific ferroptosis and gene therapy, which modulates and harnesses the endogenous iron in tumors for inducing ferroptosis while intercepting tumor angiogenesis to enhance therapeutic efficacy.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Tropical Crop Breeding, Sanya Institute, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China.
The biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are essential for sesquiterpenes and triterpenes, respectively, is primarily governed by the mevalonate pathway, wherein () plays a pivotal role. This study identified eight members of the FPS gene family in , designated -, through bioinformatics analysis, revealing their distribution across several chromosomes and a notable tandem gene cluster. The genes exhibited strong hydrophilic properties and key functional motifs crucial for enzyme activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!