Electronic structure of some adenosine receptor antagonists. VQSAR Investigation.

J Chem Inf Comput Sci

Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt.

Published: May 2002

A QSAR model has been developed for 1,3-dimethylxanthines as adenosine receptor antagonists. The model is capable of predicting the affinity toward both the A1 and A2 receptors. Constitutional, geometrical, topological, electronic descriptors (computed at the ab initio 6-31G level), and some empirical descriptors related to the hypophilicity were computed and analyzed. A two step computational strategy was adopted to select the descriptors relevant to the A1 or the A2 affinity. In the first step, each of the four main groups of descriptors is treated independently. Multiple regression analysis lead to a set of equations that reflect the weight of each of the studied descriptors. The most relevant of these descriptors were grouped, and a new multiple regression analysis has been carried out and arrived at the final QSAR model. These QSAR equations account for almost all the A2 and an appreciable part of the A1 affinity. The proposed model has been examined as a general tool of predicting the activity toward the adenosine receptor sites. A validation set of 22 xanthines were selected, and their activities were computed using the proposed QSAR model. The correspondence between the predicted and observed activities is excellent. Anova statistical analysis on the data of the validation set elaborates on the quality of these fits.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci010307xDOI Listing

Publication Analysis

Top Keywords

adenosine receptor
12
qsar model
12
receptor antagonists
8
descriptors relevant
8
multiple regression
8
regression analysis
8
validation set
8
descriptors
6
model
5
electronic structure
4

Similar Publications

Capsicum oleoresin (CO) is a concentrated extract derived from peppers ( L.) containing capsaicin (the active compound responsible for its pungency) and other bioactive components. The present study aimed to determine whether CO affects the energy expenditure and mitochondrial content of brown adipose tissue (BAT) in diet-induced obese mice.

View Article and Find Full Text PDF

G protein-coupled receptor 40 (GPR40) is gaining recognition as a potential therapeutic target for several metabolic disturbances, such as hyperglycemia and excessive inflammation. GPR40 is expressed in various tissues, including the heart; however, its specific roles in cardiomyocytes remain unknown. The objective of the present study was to investigate whether treatment with AM1638, a GPR40-full agonist, reduces palmitate-mediated cell damage in H9c2 rat cardiomyocytes.

View Article and Find Full Text PDF

Hibernating animals show a remarkable decrease in body temperature without accompanying serious organ damage. Active hypometabolism may be involved in the protective mechanisms. Therefore, in the present study, the phosphorylation status of Akt was used to examine whether metabolism is actively reduced during artificial hypothermia in hamsters.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate cerebrospinal fluid (CSF) adenosine deaminase (ADA) levels in various neurological disorders and examine the relationships between CSF ADA levels and immunological parameters.

Methods: Overall, 276 patients whose CSF ADA levels were measured for suspected tuberculous meningitis (TBM) were evaluated. Data on baseline characteristics, final diagnoses, CSF ADA levels, and other laboratory parameters were collected.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Background: Adenosine receptor 1 (A1R) is the predominant subtype of adenosine receptors, primarily distributed in memory-associated brain regions such as the cortex, hippocampus, and cerebellum. It actively participates in plasticity-regulated synaptic transmission and is crucial for functions related to sleep, arousal, cognition, learning, and memory. In a recent study, we reported that an elevation in A1R signaling mediates aberrant neuron-glial crosstalk in Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!