Translational control has been recently added to well-recognized genomic, transcriptional, and posttranslational mechanisms regulating apoptosis. We previously found that overexpressed eukaryotic initiation factor 4E (eIF4E) rescues cells from apoptosis, while ectopic expression of wild-type eIF4E-binding protein 1 (4E-BP1), the most abundant member of the 4E-BP family of eIF4E repressor proteins, activates apoptosis--but only in transformed cells. To test the possibility that nontransformed cells require less cap-dependent translation to suppress apoptosis than do their transformed counterparts, we intensified the level of translational repression in nontransformed fibroblasts. Here, we show that inhibition of 4E-BP1 phosphorylation by rapamycin triggers apoptosis in cells ectopically expressing wild-type 4E-BP1 and that expression of 4E-BP1 phosphorylation site mutants potently activates apoptosis in a phosphorylation site-specific manner. In general, proapoptotic potency paralleled repression of cap-dependent translation. However, this relationship was not a simple monotone. As repression of cap-dependent translation intensified, apoptosis increased to a maximum value. Further repression resulted in less apoptosis--a state associated with activation of translation through internal ribosomal entry sites. These findings show: that phosphorylation events govern the proapoptotic potency of 4E-BP1, that 4E-BP1 is proapoptotic in normal as well as transformed fibroblasts, and that malignant transformation is associated with a higher requirement for cap-dependent translation to inhibit apoptosis. Our results suggest that 4E-BP1-mediated control of apoptosis occurs through qualitative rather than quantitative changes in protein synthesis, mediated by a dynamic interplay between cap-dependent and cap-independent processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC133719 | PMC |
http://dx.doi.org/10.1128/MCB.22.8.2853-2861.2002 | DOI Listing |
Autophagy
January 2025
Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
Postmitotic skeletal muscle critically depends on tightly regulated protein degradation to maintain proteomic stability. Impaired macroautophagy/autophagy-lysosomal or ubiquitin-proteasomal protein degradation causes the accumulation of damaged proteins, ultimately accelerating muscle dysfunction with age. While studies have demonstrated the complementary nature of these systems, their interplay at the organism levels remains poorly understood.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States of America.
Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1.
View Article and Find Full Text PDFArch Insect Biochem Physiol
January 2025
Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
The discovery that infections of viruses are pervasive among insects has considerable potential for future applications, such as new strategies for pest control through the manipulation of virus-host interactions. However, few studies can be found that aim to minimize (for beneficial insects) or maximize (for pests) virus impact or virulence. Viruses generally employ molecular mechanisms that deviate from the cells' to increase their replication efficiency and to avoid the immune response.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States.
Dysregulation of translation is a hallmark of cancer that enables rapid changes in cellular protein production to shape oncogenic phenotypes. Translation initiation is governed by the mGpppX cap-binding protein eukaryotic translation initiation factor 4E (eIF4E), the rate-limiting factor of cap-dependent translation initiation. eIF4E is overexpressed in many cancers and drives the production of oncoproteins that promote tumor growth and survival.
View Article and Find Full Text PDFLife Sci
January 2025
Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States; Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States; Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States. Electronic address:
Aims: Post stroke hyperglycemia has been shown to deter functional recovery. Earlier findings have indicated the cap-dependent translation regulator 4E-BP1 is detrimentally upregulated in hyperglycemic conditions. The present study aims to test the hypothesis that hyperglycemic ischemic reperfusion injury (I/R) affects normal protein translation poststroke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!