Enhancement of steric repulsion with temperature in oriented lipid multilayers.

Phys Rev Lett

National Research Council, Steacie Institute for Molecular Sciences, Building 459, Station 18, Chalk River, Ontario K0J 1J0, Canada.

Published: March 2002

AI Article Synopsis

  • The study investigates how temperature affects the stacking periodicity (d) of phospholipid multilayers using neutron scattering techniques.
  • At higher temperatures, the periodicity (d) significantly increases right before the bilayers start to detach from the substrate.
  • The findings suggest that the unbinding of the bilayers is influenced by thermal fluctuations and steric repulsion, differing from previous study conclusions by Vogel et al.

Article Abstract

We have studied the temperature dependence of the stacking periodicity, d, of oriented phospholipid multilayers using grazing angle neutron scattering techniques. d is found to increase substantially at higher temperatures, just before the bilayers peel off from the substrate. Although we do not observe thermal unbinding, our results are consistent with the notion that the unbinding transition is driven by steric repulsion arising from thermal fluctuations of the membranes, in contrast to those of a recent study by Vogel et al. [Phys. Rev. Lett. 84, 390 (2000)].

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.88.128101DOI Listing

Publication Analysis

Top Keywords

steric repulsion
8
enhancement steric
4
repulsion temperature
4
temperature oriented
4
oriented lipid
4
lipid multilayers
4
multilayers studied
4
studied temperature
4
temperature dependence
4
dependence stacking
4

Similar Publications

In this work, Density Functional Theory (DFT) on Gaussian 09 W software was utilized to investigate the phenylephrine (PE) molecule (C9H13NO2). Firstly, the optimized structure of the PE molecule was obtained using B3LYP/6-311 + G (d, p) and CAM-B3LYP/6-311 + G (d, p) basis sets. The electron charge density is shown in Mulliken atomic charge as a bar chart and also as a color-filled map in Molecular Electrostatic Potential (MEP).

View Article and Find Full Text PDF

In aquatic environments, the deposition behaviors of nanoplastics (NPs) are closely associated with interfacial interaction between NPs and iron (hydr)oxides minerals, which are typically coupled with solution chemistry and organic matter. However, the roles of solution chemistry and organic matter in the deposition behavior of NPs with iron (hydr)oxides minerals and related interfacial interaction mechanism are still poorly understood. In this study, the deposition behaviors of carboxyl-modified polystyrene nanoparticles (COOH-PSNPs) with magnetite were systematically investigated.

View Article and Find Full Text PDF

Self-assembly of proteins and polyelectrolytes in aqueous solutions is a promising approach for the development of advanced biotherapeutics and engineering efficient biotechnological processes. Synthetic polyions containing sterically repulsive ethylene oxide moieties are especially attractive as protein modifying agents, as they can potentially induce a PEGylation-like stabilizing effect without the need for complex covalent binding reactions. In this study, we investigated the protein-binding properties of anionic polyelectrolytes based on an inorganic polyphosphazene backbone, with ethylene oxide groups incorporated into both grafted and linear macromolecular topologies.

View Article and Find Full Text PDF

Strong self-association of chitosan microgels at interface mediated high stabilities in Pickering emulsion.

Int J Biol Macromol

December 2024

School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China. Electronic address:

The spontaneous self-organization of naturally-occurring polysaccharide particles into a thick and robust gel network at interface in Pickering emulsion is challenging. Inspired by the phenomenon that chitosan microgels (CSMs) with a certain size could self-associate into a solidified gel phase upon freezing, here we tentatively used CSMs to construct a highly-stable Pickering emulsion. CSMs can form a stable Langmuir's layer at the water/oil interface through the network deformation and re-arrangement of dangling chains, while the subsequent negative polymer coating can avoid the bridging resulting from the cross-association for CSMs on different emulsion droplets upon freezing.

View Article and Find Full Text PDF

Contrasteric Glycosylations of Cotylenol and 1,2-Diols by Virtual Linker Selection.

J Am Chem Soc

January 2025

Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.

Many terpene glycosides exhibit contrasteric patterns of 1,2-diol glycosylation in which the more hindered alcohol bears a sugar; protection of the less hindered alcohol only increases steric repulsion. Here, we report a method for contrasteric glycosylation using a new sugar-linker that forms a cleavable, 10-membered ring with high efficiency, leading to syntheses of cotylenin E, J, and ISIR-050. Linker selection was aided by DFT calculations of side reactions and stereoselectivity, as well as conformational analyses using autoDFT, a Python script that converts SMILES strings to DFT-optimized conformational ensembles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!