Phonon anomalies observed in various high T(c) cuprates by neutron experiments are analyzed theoretically in terms of the stripe concept. The phonon self-energy correction is evaluated by taking into account the charge collective modes of stripes, giving rise to dispersion gap, or kink and shadow phonon modes at twice the wave number of spin stripe. These features coincide precisely with observations. The gapped branches of the phonon are found to be in-phase and out-of-phase oscillations relative to the charge collective mode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.88.115501 | DOI Listing |
Nat Commun
January 2025
Institute of Solid State Physics, TU Wien, 1040, Vienna, Austria.
Waterfalls are anomalies in the angle-resolved photoemission spectrum where the energy-momentum dispersion is almost vertical, and the spectrum strongly smeared out. These anomalies are observed at relatively high energies, among others, in superconducting cuprates and nickelates. The prevalent understanding is that they originate from the coupling to some boson, with spin fluctuations and phonons being the usual suspects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Stanford Institute for Materials and Energy Sciences, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA 94025.
Recent experiments suggest a new paradigm toward novel colossal magnetoresistance (CMR) in a family of materials EuM[Formula: see text]X[Formula: see text] (M [Formula: see text] Cd, In, Zn; X [Formula: see text] P, As), distinct from the traditional avenues involving Kondo-Ruderman-Kittel-Kasuya-Yosida crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy and density functional theory calculations to explore their origin, particularly focusing on EuCd[Formula: see text]P[Formula: see text]. While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance ([Formula: see text]) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
In recent years, active Brownian particles have emerged as a prominent model system for comprehending the behaviors of active matter, wherein particles demonstrate self-propelled motion by harnessing energy from the surrounding environment. A fundamental objective of studying active matter is to elucidate the physical mechanisms underlying its collective behaviors. Drawing inspiration from advancements in molecular glasses, our study unveils a low-energy "flat mode" within the transverse spectrum of active Brownian vibrators-a nearly two-dimensional, bidisperse granular assembly.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Department of Physics, Indian Institute of Technology, Kanpur 208016, India.
GdSiAl single crystal has been investigated by means of magnetic and magneto-transport measurements and compared withdensity functional theory (DFT) calculations. Significant non-saturating magnetoresistance reaching∼18%at 12T and2Kwas observed, alongside the presence of Shubnikov-de Haas oscillations with the fundamental frequencies 22.09T and 77.
View Article and Find Full Text PDFStruct Dyn
September 2024
Light and Matter Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
The application of dynamic strain holds the potential to manipulate topological invariants in topological quantum materials. This study investigates dynamic structural deformation and strain modulation in the Weyl semimetal WTe, focusing on the microscopic regions with static strain defects. The interplay of static strain fields, at local line defects, with dynamic strain induced from photo-excited coherent acoustic phonons results in the formation of local standing waves at the defect sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!