Analytical expressions are derived describing beam parameters on a stripping foil (SF) as a function of radial amplitude of betatron oscillations and of energy gain. The results computed from these expressions are in good agreement with those from numerical calculations. These results indicate the existence of a parametric relationship between radial emittance and energy spread, via the amplitude of radial betatron oscillations. This relationship enables one to generate the working diagram of expected beam parameters on a SF. Such a diagram can be particularly useful for designers of extraction systems, since it gives the relationship between quantities used as extraction system input parameters. The derived analytical expressions can make the design of cyclotrons easier and significantly reduce the need of numerical simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.65.036504 | DOI Listing |
Small Methods
January 2025
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
Anode-less sodium metal batteries (SMBs) suffer from the formation of Na dendrites and inactive Na on an anode substrate though showing advantages of high energy densities and low costs. Herein, N,O co-doped carbon spheres (NOCS), which are synthesized via a scalable polymerization and pyrolysis method, are employed as a thin and stable sodiophillic nucleation layer on the Cu foil. Combined with electrochemical measurements, Na deposition morphology observations and density functional theory calculations, it is revealed that the introduced N and O heteroatoms can greatly enhance the adsorption of Na on the carbon substrate and reduce the nucleation overpotential, thus forming sufficient seeding sites and guiding homogeneous Na deposition.
View Article and Find Full Text PDFSmall Methods
December 2024
College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
Aqueous zinc-ion batteries (AZIBs) are considered a promising choice for energy storage devices owing to the excellent safety and favorable capacity of the Zn anode. However, the uncontrolled dendrite growth of Zn anode severely constrains the practical applications of AZIBs. Herein, a novel ion enrichment layer of CuS is designed and constructed on the Zn foil surface to achieve dendrite-free Zn anode.
View Article and Find Full Text PDFMater Horiz
December 2024
School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Korea.
A Zn-coordinated porphyrinic artificial solid-electrolyte interphase (αSEI) layer, named [Zn]PP-4COO-(Zn), was developed to improve the reversibility of zinc metal plating/stripping in aqueous zinc-ion batteries (ZIBs). Inspired by nitrogen-terminating sites of biological molecules coordinating and transporting zinc in zinc metabolic processes, the αSEI layer was designed with zinc ions connecting porphyrinic building blocks to form two-dimensional clathrate sheets and stacking -plane sheets along the -axis to allow N cages to align and form porphyrinic N channels for zinc transport. The [Zn]PP-4COO-(Zn) αSEI layer was Zn-conductive and structurally durable during repeated stripping/plating.
View Article and Find Full Text PDFACS Nano
December 2024
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
Adv Mater
January 2025
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Anode-free sodium metal batteries (AFSMBs) hold great promise due to high energy density and low cost. Unfortunately, their practical applications are hindered by poor cycling stability, which is attributed to Na dendrite growth and inferior Na plating/stripping reversibility on conventional sodiophobic current collectors. Here, a thin high-entropy alloy (HEA, NbMoTaWV) interfacial layer composed of densely packed nanoplates is constructed on commercial aluminum foil (NbMoTaWV@Al) for AFSMBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!