Multiparameter generalization of nonextensive statistical mechanics.

Phys Rev E Stat Nonlin Soft Matter Phys

Consorzio RFX, Associazione Euratom-ENEA, Corso Stati Uniti 4, 35127 Padova, Italy.

Published: March 2002

We show that the stochastic interpretation of Tsallis's thermostatistics given recently by Beck [Phys. Rev. Lett 87, 180601 (2001)] leads naturally to a multiparameter generalization. The resulting class of distributions is able to fit experimental results, which cannot be reproduced within Boltzmann's or Tsallis's formalism.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.65.035106DOI Listing

Publication Analysis

Top Keywords

multiparameter generalization
8
generalization nonextensive
4
nonextensive statistical
4
statistical mechanics
4
mechanics stochastic
4
stochastic interpretation
4
interpretation tsallis's
4
tsallis's thermostatistics
4
thermostatistics beck
4
beck [phys
4

Similar Publications

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

Inland waters face multiple threats from human activities and natural factors, leading to frequent water quality issues, particularly the significant challenge of eutrophication. Hyperspectral remote sensing provides rich spectral information, enabling timely and accurate assessment of water quality status and trends. To address the challenge of inaccurate water quality mapping, we propose a novel deep learning framework for multi-parameter estimation from hyperspectral imagery.

View Article and Find Full Text PDF

Wave-CAIPI Multiparameter MR Imaging in Neurology.

NMR Biomed

March 2025

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

In clinical practice, particularly in neurology assessments, imaging multiparametric MR images with a single-sequence scan is often limited by either insufficient imaging contrast or the constraints of accelerated imaging techniques. A novel single scan 3D imaging method, incorporating Wave-CAIPI and MULTIPLEX technologies and named WAMP, has been developed for rapid and comprehensive parametric imaging in clinical diagnostic applications. Featuring a hybrid design that includes wave encoding, the CAIPIRINHA sampling pattern, dual time of repetition (TR), dual flip angle (FA), multiecho, and optional flow modulation, the WAMP method captures information on RF B1t fields, proton density (PD), T1, susceptibility, and blood flow.

View Article and Find Full Text PDF

Monolithic Multiparameter Terahertz Nano/Microdetector Based on Plasmon Polariton Atomic Cavity.

Adv Mater

January 2025

State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.

Terahertz (THz) signals are crucial for ultrawideband communication and high-resolution radar, demanding miniaturized detectors that can simultaneously measure multiple parameters such as intensity, frequency, polarization, and phase. Traditional detectors fail to meet these needs. To address this, we introduce a plasmon polariton atomic cavity (PPAC) detector based on monolayer graphene, offering a multifunctional, monolithic, and miniaturized solution.

View Article and Find Full Text PDF

Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.

Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!