AI Article Synopsis

Article Abstract

There is a growing interest in the use of physiological signals for communication and operation of devices for the severely motor disabled as well as for healthy people. A few groups around the world have developed brain-computer interfaces (BCIs) that rely upon the recognition of motor-related tasks (i.e., imagination of movements) from on-line EEG signals. In this paper we seek to find and analyze the set of relevant EEG features that best differentiate spontaneous motor-related mental tasks from each other. This study empirically demonstrates the benefits of heuristic feature selection methods for EEG-based classification of mental tasks. In particular, it is shown that the classifier performance improves for all the considered subjects with only a small proportion of features. Thus, the use of just those relevant features increases the efficiency of the brain interfaces and, most importantly, enables a greater level of adaptation of the personal BCI to the individual user.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004220100282DOI Listing

Publication Analysis

Top Keywords

relevant eeg
8
eeg features
8
spontaneous motor-related
8
motor-related tasks
8
mental tasks
8
features
4
features classification
4
classification spontaneous
4
tasks
4
tasks growing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!