Capillary forces between surfaces with nanoscale roughness.

Adv Colloid Interface Sci

Department of Materials Science and Engineering and Engineering Research Center for Particle Science and Technology, University of Florida, Gainesville 32611-16135, USA.

Published: February 2002

The flow and adhesion behavior of fine powders (approx. less than 10 microm) is significantly affected by the magnitude of attractive interparticle forces. Hence, the relative humidity and magnitude of capillary forces are critical parameters in the processing of these materials. In this investigation, approximate theoretical formulae are developed to predict the magnitude and onset of capillary adhesion between a smooth adhering particle and a surface with roughness on the nanometer scale. Experimental adhesion values between a variety of surfaces are measured via atomic force microscopy and are found to validate theoretical predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0001-8686(01)00082-3DOI Listing

Publication Analysis

Top Keywords

capillary forces
8
forces surfaces
4
surfaces nanoscale
4
nanoscale roughness
4
roughness flow
4
flow adhesion
4
adhesion behavior
4
behavior fine
4
fine powders
4
powders approx
4

Similar Publications

Fabrication of a micropatterned shape-memory polymer patch with L-DOPA for tendon regeneration.

Biomater Sci

January 2025

Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.

A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects.

View Article and Find Full Text PDF

A Reusable Capillary Flow-Driven Microfluidic System for Abscisic Acid Detection Using a Competitive Immunoassay.

Sensors (Basel)

January 2025

Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.

Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.

View Article and Find Full Text PDF

Accurate models for predicting drop dynamics, such as maximum drop departure sizes, are crucial for estimating heat transfer rates during condensation on superhydrophobic (SH) surfaces. Previous studies have focused on examining the heat transfer rates for SH surfaces under the influence of gravity or vapor flowing over the surface. This study investigates the impact of surface solid fraction and texture scale on drop mobility in a condensing environment with a humid air flow.

View Article and Find Full Text PDF

Microdifferential Pressure Measurement Device for Cellular Microenvironments.

Bioengineering (Basel)

December 2024

Fusion Oriented Research for Disruptive Science and Technology, Japan Science and Technology Agency, 5-3, Yonbancho, Chiyoda-ku, Tokyo 102-8666, Japan.

Mechanical forces influence cellular proliferation, differentiation, tissue morphogenesis, and functional expression within the body. To comprehend the impact of these forces on living organisms, their quantification is essential. This study introduces a novel microdifferential pressure measurement device tailored for cellular-scale pressure assessments.

View Article and Find Full Text PDF

Pore formation mechanism and size regulation study of atmospheric dried cellulose nanofiber aerogel templated by emulsions.

Int J Biol Macromol

January 2025

College of Textile Science & Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China. Electronic address:

Atmospheric pressure drying (APD) method holds great promise in the large-scale production of aerogels without specialized equipment and critical conditions. However, atmospheric-dried cellulose- based aerogels are challenged by the collapse of the pore walls induced by the capillary force that arises during solvent evaporation. This study prepared an atmospheric dried cellulose nanofiber (CNF) aerogel with a low shrinkage rate (17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!