According to the hitherto accepted view, neutrophils kill ingested microorganisms by subjecting them to high concentrations of highly toxic reactive oxygen species (ROS) and bringing about myeloperoxidase-catalysed halogenation. We show here that this simple scheme, which for many years has served as a satisfactory working hypothesis, is inadequate. We find that mice made deficient in neutrophil-granule proteases but normal in respect of superoxide production and iodinating capacity, are unable to resist staphylococcal and candidal infections. We also show that activation provokes the influx of an enormous concentration of ROS into the endocytic vacuole. The resulting accumulation of anionic charge is compensated for by a surge of K+ ions that cross the membrane in a pH-dependent manner. The consequent rise in ionic strength engenders the release of cationic granule proteins, including elastase and cathepsin G, from the anionic sulphated proteoglycan matrix. We show that it is the proteases, thus activated, that are primarily responsible for the destruction of the bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/416291a | DOI Listing |
Acta Biochim Biophys Sin (Shanghai)
January 2025
International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China.
Relieving hypoxia in the tumor microenvironment (TME) promotes innate and adaptive immunity. Our previous research demonstrated that reoxygenation of the TME promotes the phagocytosis and tumor-killing functions of tumor-associated macrophages (TAMs) by upregulating pyruvate carboxylase (PCB). However, the mechanism remains obscure.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia.
Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China.
Cervical cancer poses a substantial threat to women's health, underscoring the necessity for effective therapeutic agents with low toxicity that specifically target cancer cells. As cancer progresses, increased glucose consumption causes glucose scarcity in the tumor microenvironment (TME). Consequently, it is imperative to identify pharmacological agents capable of effectively killing cancer cells under conditions of low glucose availability within the TME.
View Article and Find Full Text PDFBiomolecules
January 2025
National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy.
In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activity of NK cells and reduce off-target effects. We designed and developed a cis-acting immunocytokine composed of an anti-CD56 single-chain Fragment variable (scFv) and IL15, labeled scFvB1IL15.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium.
Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from , the process is labor-intensive, limiting broader application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!