Perioperative-induced hypothermia is a common means of reducing ischemic injury in neurosurgical procedures and cardiac surgery, and it may occur accidentally. Somatosensory evoked potentials (SSEPs) are used frequently for neurophysiologic monitoring of these procedures. The effects of hypothermia on SSEPs have been studied widely in humans with cardiopulmonary bypass (CPB) during nonpulsatile flow. However, changes of latency and amplitude of early SSEP components during spontaneous circulation have not yet been studied. Median nerve SSEPs were recorded in 21 patients during rewarming from 32 to 36 degrees C core temperature. Latencies and amplitudes of N9, N13, N20, and central conduction time were registered at 32, 34, and 36 degrees C. Latencies of N9, N13, and N20 were prolonged at 32 degrees C compared with 36 degrees C (N9: 13.4 +/- 1.4 msec versus 11.8 +/- 1.4 msec, P <.05; N13: 17.6 +/- 1.9 msec versus 15.4 +/- 1.4 msec, P <.01; N20: 26.5 +/- 1.8 msec versus 22.4 +/- 1.6 msec, P <.001). Amplitude of N20 was higher at 32 degrees C compared with 36 degrees C (2.86 +/- 1.94 microV versus 2.07 +/- 1.47 microV, P < .05). Central conduction time decreased by 27%, and peripheral latency of N13 decreased by 14%. The increase in SSEP latency (N9, N13, and N20) and central conduction time during moderate hypothermia of 32 degrees C and spontaneous circulation are comparable with those during nonpulsatile flow on CPB. In contrast to nonpulsatile flow, the amplitude of N20 was increased significantly (P < .05) during moderate hypothermia and pulsatile circulation. These results suggest to be cautious about generalizing the effects of hypothermia on SSEP during CPB to spontaneous circulation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00008506-200204000-00009DOI Listing

Publication Analysis

Top Keywords

effects hypothermia
8
median nerve
8
somatosensory evoked
8
evoked potentials
8
spontaneous circulation
8
n13 n20
8
+/- msec
8
hypothermia median
4
nerve somatosensory
4
potentials spontaneous
4

Similar Publications

The effect of thermoelectric craniocerebral cooling device on protecting brain functions in post-cardiac arrest syndrome.

Front Cardiovasc Med

January 2025

Department of Anesthesiology and Reanimation, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye.

Aim: This study aimed to protect brain functions in patients who experienced in-hospital cardiac arrest through the application of local cerebral hypothermia. By utilizing a specialized thermal hypothermia device, this approach sought to mitigate ischemic brain injury associated with post-cardiac arrest syndrome, enhance survival rates, and improve neurological outcomes as measured by standardized scales.

Methods: A prospective, single-center cohort study was conducted involving patients aged ≥18 years who experienced in-hospital cardiac arrest and achieved return of spontaneous circulation (ROSC).

View Article and Find Full Text PDF

Cerebral palsy (CP) is a debilitating disorder that can lead to life-long disability, with a high incidence in Saudi Arabia. Secondary epilepsy and cardiac complications are common in CP patients. We present a rare case of a 17-year-old female with CP, attention-deficit hyperactivity disorder (ADHD), secondary epilepsy, and a history of post-cardiac arrest, with home medications carbamazepine, risperidone, and sodium valproate.

View Article and Find Full Text PDF

Comparison of Temporal Artery and Rectal Temperature Measurement During Cooling and Rewarming in Neonates Treated for Hypoxic Ischemic Encephalopathy.

Adv Neonatal Care

January 2025

Author Affiliations: Neonatal Intensive Care Unit, Seattle Children's Hospital, Seattle, WA (Mrs LaBella, Ms Kelly, Mrs Carlin, and Dr Walsh); and Seattle Children's Research Institute, Seattle, WA (Mrs Carlin and Dr Walsh).

Background: Finding an accurate and simple method of thermometry in the neonatal intensive care unit is important. The temporal artery thermometer (TAT) has been recommended for all ages by the manufacturer; however, there is insufficient evidence for the use of TAT in infants, especially to detect hypothermia.

Purpose: To assess the accuracy of the TAT in hypothermic neonates in comparison to a rectal thermometer.

View Article and Find Full Text PDF

Sex Differences in Neurological Outcome at 6 and 12 Months Following Severe Traumatic Brain Injury. An Observational Analysis of the OXY-TC Trial.

J Neurotrauma

January 2025

Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Grenoble, and Inserm, U1216, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France.

The effect of sex in outcomes after severe traumatic brain injury (TBI) remains uncertain. We explored whether outcomes differed between women and men after standardized care management during the first 5 days in the intensive care unit (ICU). This study was an observational analysis of the OXY-TC multicenter randomized clinical trial between June 15, 2016 and April 17, 2021.

View Article and Find Full Text PDF

Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!