Intestinal permeation and gastrointestinal disease.

J Clin Gastroenterol

Division of Gastroenterology and Nutrition, Rush University, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA.

Published: April 2002

The gastrointestinal tract constitutes one of the largest sites of exposure to the outside environment. The function of the gastrointestinal tract in monitoring and sealing the host interior from intruders is called the gut barrier. A variety of specific and nonspecific mechanisms are in operation to establish the host barrier; these include luminal mechanisms and digestive enzymes, the epithelial cells together with tight junctions in between them, and the gut immune system. Disruptions in the gut barrier follow injury from various causes including nonsteroidal anti-inflammatory drugs and oxidant stress, and involve mechanisms such as adenosine triphosphate depletion and damage to epithelial cell cytoskeletons that regulate tight junctions. Ample evidence links gut barrier dysfunction to multiorgan system failure in sepsis and immune dysregulation. Additionally, contribution of gut barrier dysfunction to gastrointestinal disease is an evolving concept and is the focus of this review. An overview of the evidence for the role of gut barrier dysfunction in disorders such as Crohn's disease, celiac disease, food allergy, acute pancreatitis, non-alcoholic fatty liver disease, and alcoholic liver disease is provided, together with critical insight into the implications of this evidence as a primary disease mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004836-200204000-00003DOI Listing

Publication Analysis

Top Keywords

gut barrier
20
barrier dysfunction
12
gastrointestinal disease
8
gastrointestinal tract
8
tight junctions
8
liver disease
8
disease
7
gut
6
barrier
6
intestinal permeation
4

Similar Publications

Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.

View Article and Find Full Text PDF

Background: Studies using Alzheimer's disease (AD) models suggest that gut bacteria contribute to amyloid pathology and systemic inflammation. Further, gut-derived metabolites serve critical roles in regulating cholesterol, blood-brain barrier permeability, neuroinflammation, and circadian rhythms. Recent studies from the Alzheimer's Disease Neuroimaging Initiative have shown that serum-based gut-derived metabolites are associated with AD biomarkers and cognitive impairment.

View Article and Find Full Text PDF

Background: Irritable bowel syndrome (IBS) is a common gastrointestinal disease. Recently, an increasing number of studies have shown that Toll-like receptor 4 (TLR4), widely distributed on the surface of a variety of epithelial cells (ECs) and immune sentinel cells in the gut, plays a vital role in developing IBS.

Objectives: We sought to synthesize the existing literature on TLR4 in IBS and inform further study.

View Article and Find Full Text PDF

Gut-liver translocation of pathogen Klebsiella pneumoniae promotes hepatocellular carcinoma in mice.

Nat Microbiol

January 2025

Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.

Hepatocellular carcinoma (HCC) is accompanied by an altered gut microbiota but whether the latter contributes to carcinogenesis is unclear. Here we show that faecal microbiota transplantation (FMT) using stool samples from patients with HCC spontaneously initiate liver inflammation, fibrosis and dysplasia in wild-type mice, and accelerate disease progression in a mouse model of HCC. We find that HCC-FMT results in gut barrier injury and translocation of live bacteria to the liver.

View Article and Find Full Text PDF

Engineered S. cerevisiae-pYD1-ScFv-AFB1 mitigates Aflatoxin B1 toxicity via bio-binding and intestinal microenvironment repair.

Food Chem Toxicol

December 2024

National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China. Electronic address:

The highly toxic aflatoxin B1 (AFB1) is considered one of the primary risk factors for hepatocellular carcinoma, while effective measures after AFB1 exposure remain to be optimized. This study utilized cell-surface-display technique to construct an engineered S. cerevisiae-pYD1-ScFv-AFB1 (S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!