The dendritic cell (DC) is the most potent APC of the immune system, capable of stimulating naive T cells to proliferate and differentiate into effector T cells. Recombinant adenovirus (Adv) readily transduces DCs in vitro allowing directed delivery of transgenes that modify DC function and immune responses. In this study we demonstrate that footpad injection of a recombinant Adv readily targets transduction of myeloid and lymphoid DCs in the draining popliteal lymph node, but not in other lymphoid organs. Popliteal DCs transduced with an empty recombinant Adv undergo maturation, as determined by high MHC class II and CD86 expression. However, transduction with vectors expressing human IL-10 limit DC maturation and associated T cell activation in the draining lymph node. The extent of IL-10 expression is dose dependent; transduction with low particle numbers (10(5)) yields only local expression, while transduction with higher particle numbers (10(7) and 10(10)) leads additionally to IL-10 appearance in the circulation. Furthermore, local DC expression of human IL-10 following in vivo transduction with low particle numbers (10(5)) significantly improves survival following cecal ligation and puncture, suggesting that compartmental modulation of DC function profoundly alters the sepsis-induced immune response.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.168.7.3412DOI Listing

Publication Analysis

Top Keywords

particle numbers
12
recombinant adv
8
lymph node
8
expression transduction
8
human il-10
8
transduction low
8
low particle
8
numbers 105
8
local expression
8
expression
5

Similar Publications

Continuous Characterization of Insoluble Particles in Ice Cores Using the Single-Particle Extinction and Scattering Method.

Environ Sci Technol

December 2024

Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, Bern 3012, Switzerland.

This study presents the integration of the single-particle extinction and scattering (SPES) method in a continuous flow analysis (CFA) setup. Continuous measurements with the instrument allow for the characterization of water-insoluble particles in ice cores at high resolution with a minimized risk of contamination. The SPES method can be used to investigate particles smaller than 1 μm, which previously could not be detected by instruments typically used in CFA.

View Article and Find Full Text PDF

Forage sources in total mixed rations on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves.

Sci Rep

December 2024

Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, n 11, Piracicaba, SP, 1341-900, Brazil.

The inclusion of forage sources in calf diets is often discussed, and the main point debated is whether the inclusion level, particle size, source, and how forage is offered may impact gut fill and reduce body weight gain, as well as impact gastrointestinal tract development. This study aimed to determine the effects of feeding forage sources with different qualities on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves. Forty-eight Holstein dairy calves were blocked according to sex and body weight (BW) at 28 days of life and randomly assigned to 1 of 4 dietary treatments.

View Article and Find Full Text PDF

In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles.

View Article and Find Full Text PDF

Impact of Particle Size and Sintering Temperature on Calcium Phosphate Gyroid Structure Scaffolds for Bone Tissue Engineering.

J Funct Biomater

November 2024

Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.

Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue.

View Article and Find Full Text PDF

In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!