1. Quinolinic acid may be an important endogenous excitotoxin, but its concentrations in brain are low. We have therefore attempted to determine whether its neurotoxicity can be increased by the simultaneous presence of free radicals. 2. Quinolinic acid was injected into the hippocampus of anaesthetized rats at doses of 40 and 80 nmols which produced little neuronal loss, and 120 nmols which produced over 90% neuronal loss. 3. A mixture of xanthine and xanthine oxidase, a known source of free radical reactive oxygen species, also generated little damage alone, but killed over 80% of CA1 neurons when combined with 80 nmols of quinolinic acid. Similarly, the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) potentiated the damage produced by quinolinic acid. 4. The glutamate antagonist 5,7-dichlorokynurenic acid prevented the damage produced by 120 nmols of quinolinic acid, but not that produced by quinolinic acid plus xanthine/xanthine oxidase, indicating that damage was not simply the result of free radical enhancement of NMDA receptor activation. 5. Three chemically dissimilar antagonists at adenosine A(2A) receptors prevented the damage caused by quinolinic acid and xanthine/xanthine oxidase or by quinolinic acid plus SNAP. 6. It is concluded that reactive oxygen species can potentiate the neurotoxicity of quinolinic acid. The site of interaction is probably distal to the NMDA receptor. Blockade of adenosine A(2A) receptors can protect against this combined damage, suggesting potential value in the prevention of brain damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573275PMC
http://dx.doi.org/10.1038/sj.bjp.0704613DOI Listing

Publication Analysis

Top Keywords

quinolinic acid
40
adenosine a2a
12
acid
11
quinolinic
10
damage
8
free radicals
8
nmols produced
8
neuronal loss
8
120 nmols
8
free radical
8

Similar Publications

Rat models of postintracerebral hemorrhage pneumonia induced by nasal inoculation with or intratracheal inoculation with LPS.

Front Immunol

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

Background: A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP).

Aim: To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model.

Methods: We established two standardized models of post-ICH pneumonia by nasal inoculation with () or intratracheal inoculation with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Thrombin-induced kynurenine 3-monooxygenase causes variations in the kynurenine pathway, leading to neurological deficits in a murine intracerebral hemorrhage model.

J Pharmacol Sci

February 2025

Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.

The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.

View Article and Find Full Text PDF

Peripheral tryptophan-kynurenine pathway dysfunction in first-episode schizophrenia.

Sci Rep

January 2025

Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.

The tryptophan (TRP)-kynurenine (KYN) pathway is involved in the pathogenesis of schizophrenia. This study aimed to investigate the levels of TRP-KYN metabolites in serum and urine of patients with first-episode schizophrenia (FES) and their association with clinical manifestations. This study included 38 drug-naive patients with FES and 43 healthy controls (HCs).

View Article and Find Full Text PDF

Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.

View Article and Find Full Text PDF

Constitutive loss of kynurenine-3-monooxygenase changes circulating kynurenine metabolites without affecting systemic energy metabolism.

Am J Physiol Endocrinol Metab

January 2025

Molecular and Cellular Exercise Physiology, Department of physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites of the kynurenine pathway of tryptophan degradation with opposing biological activities in the central nervous system. In the periphery, KYNA is known to positively affect metabolic health, whereas the effects of QUIN remain less explored. Interestingly, metabolic stressors, including exercise and obesity, differentially change the balance between circulating KYNA and QUIN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!