Quantitative changes in ovarian inhibin/activin subunit and follistatin mRNAs during the rat estrous cycle were examined by ribonuclease protection assay using digoxygenin-labeled RNA probes. Levels of ovarian inhibin alpha subunit mRNA remained low throughout estrus, metestrus, and diestrus; abruptly increased on the morning of proestrus; then rapidly decreased when the primary gonadotropin surge occurred. A similar changing pattern was observed in inhibin/activin beta(A) subunit mRNA. On the other hand, inhibin/activin beta(B) subunit mRNA showed a different changing pattern. Levels of beta(B) subunit mRNA remained constant during metestrus and diestrus, abruptly decreased on the afternoon of proestrus, then quickly recovered from the nadir by 1100 h on estrus. Throughout the rat estrous cycle, especially during the periovulatory period, alpha subunit mRNA levels were considerably higher than beta(A) and beta(B) subunit mRNA levels. In addition, changes in plasma concentrations of inhibin A and inhibin B were very similar to that in ovarian beta(A) and beta(B) subunit mRNA levels, respectively, with several-hour delays. These results suggest that levels of beta subunit mRNAs restrict secretion of dimeric inhibins. Levels of follistatin mRNA remained low from the midnight of metestrus to the midnight of diestrus, then increased until initiation of the primary gonadotropin surge. Thereafter, follistatin mRNA decreased, reached the nadir at 0200 h on estrus, then increased abruptly at 1100 h on estrus. Afterward, follistatin mRNA levels remained high until the morning of metestrus. The changing pattern of ovarian follistatin mRNA was similar to, and preceded, the changes in plasma concentrations of progesterone, suggesting that ovarian follistatin may modulate progesterone secretion during the rat estrous cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod66.4.1119 | DOI Listing |
J Adv Res
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China. Electronic address:
Introduction: Periodontal diseases are prevalent among middle-aged and elderly individuals. There's still no satisfactory solution for tooth loss caused by periodontal diseases. Human periodontal ligament stem cells (hPDLSCs) is a distinctive subgroup of mesenchymal stem cells, which play a crucial role in periodontal supportive tissues, but their application value hasn't been fully explored yet.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13210, USA.
Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription factor regulating key components of the GSH synthetic pathway, the role of Nrf2 in controlling constitutive GSH synthetic and release mechanisms remains incompletely investigated. Our data show that naïve primary mouse astrocytes cultured from the cerebral cortices of Nrf2 knockout (Nrf2) pups have significantly less intracellular and extracellular GSH levels when compared to astrocytes cultured from Nrf2 wild-type (Nrf2) pups.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
Long non-coding RNAs (lncRNAs) are emerging as critical regulators in honeybee physiology, influencing development, behavior, and stress responses. This study investigates the role of lncRNA LOC113219358 in the immune response and neurophysiological regulation of brains. Using RNA interference (RNAi) and RNA sequencing (RNA-seq), we demonstrate that silencing lncLOC113219358 significantly alters the expression of 162 mRNA transcripts, including genes associated with detoxification, energy metabolism, and neuronal signaling.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.
Background: The phosphoinositide 3-kinase (PI3K) pathway is activated in multiple cancers. However, the significance of encoding the PI3K regulatory subunit, an inhibitor of the PI3K catalytic subunit encoded by , in ovarian cancer development is largely unknown.
Methods: Here, we investigated genomic alterations and gene expression by direct sequencing and qPCR methods in 197 ovarian cancers.
Cancers (Basel)
January 2025
Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy.
Background/objectives: Telomerase reverse transcriptase (TERT) is the catalytic subunit of the telomerase enzyme responsible for telomere length maintenance and is an important cancer hallmark. Our study aimed to clarify the mRNA expression of TERT in peritoneal mesothelioma (PeM), and to explore the relationship between its expression and the clinicopathological parameters and prognosis of patients with PeM.
Methods: In a cohort of 13 MpeM patients, we evaluated histotype, nuclear grade, mitotic count, necrosis, inflammation, Ki67, BAP1, MTAP and p16 expression by immunohistochemistry, / status by FISH and TERT mRNA expression by RNAscope.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!