The pathological hallmark of Alzheimer's disease (AD) is accumulation in the brain of amyloid composed of the 40-mer peptide A beta. Many fundamental questions about the biology of (AD) remain unanswered because there is currently no method of quantifying A beta amyloid in vivo. A noninvasive method of detecting and quantifying A beta amyloid in vivo would have wide application for the premortem diagnosis of AD and the efficient evaluation of candidate therapeutics aimed at inhibiting the formation and growth of A beta amyloid. Taking advantage of the extraordinarily high affinity of A beta for itself, we have synthesized an N'-terminal diethylenetriaminepentaacetic acid (DTPA) derivative of A beta possessing the kinetic activity and specificity for A beta amyloid desired of a probe to be used for noninvasive imaging. DTPA-A beta(3-40) is readily labeled with (111)InOAc(3) to yield a stable probe with exquisite specificity for naturally occurring and synthetic A beta amyloid in vitro. Moreover, (111)In-DTPA-A beta(3-40), administered intravascularly can specifically deposit onto and label previously injected synthetic A beta amyloid and be imaged in vivo with a gamma camera. The present results demonstrate the design, synthesis, and use of an A beta amyloid-specific probe and methods for its use as a noninvasive imaging agent. In vivo imaging of A beta amyloid represents an important step toward the development of biochemically based objective tools for the assessment of progression of AD and efficacy of potential therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc010066z | DOI Listing |
Geroscience
January 2025
Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore.
In Alzheimer's disease (AD), the accumulation of neuropathological markers such as amyloid-β plaques, neurofibrillary tangles, and cortical neurodegeneration occurs over many years before overt manifestation of cognitive impairment. There is thus a need for neuropsychological markers that are indicative of pathological changes in the early stages of the disease. Intra-individual cognitive variability (IICV), defined as the variation of an individual's performance across cognitive domains, is a promising neuropsychological marker measuring heterogeneous changes in cognition that may reflect these early pathological changes.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Biophysics, Panjab University, Chandigarh, 160014, India.
Alzheimer's disease (AD) is a degenerative neurological disorder defined by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Current pharmacological treatments for AD only provide symptomatic relief, and there is a lack of definitive disease-modifying therapies. Chemical chaperones, such as 4-Phenylbutyric acid (4PBA) and Tauroursodeoxycholic acid, have shown neuroprotective effects in animal and cell culture models.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of General Internal Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Background: Alzheimer's disease (AD) is an irreversible age-related neurodegenerative condition characterized by the deposition of amyloid-β (Aβ) peptides and neurofibrillary tangles. Di Huang Yi Zhi (DHYZ) formula, a traditional Chinese herbal compound comprising several prescriptions, demonstrates properties that improve cognitive abilities in clinical. Nonetheless, its molecular mechanisms on treating AD through improving neuron cells mitochondria function have not been deeply investigated.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
The spontaneous aggregation of amyloid-β (Aβ) leads to neuronal cell death in the brain and causes the development of Alzheimer's disease (AD). The efficient detection of the aggregation state of Aβ holds significant promise for the early diagnosis and subsequent treatment of this neurodegenerative disorder. Currently, most of the fluorescent probes used for the detection of Aβ fibrils share similar recognition moieties, such as the ,-dimethylamino group, ,-diethylamino group, and piperidyl group.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
In recent years, an increasing number of studies have shown that increased activation of aspartic endopeptidases (AEPs) is a common symptom in neurodegenerative diseases (NDDs). AEP cleaves amyloid precursor protein (APP), tau (microtubule-associated protein tau), α- synuclein (α-syn), SET (a 39-KDa phosphoprotein widely expressed in various tissues and localizes predominantly in the nucleus), and TAR DNA-binding protein 43 (TDP-43), and promotes their aggregation, contributing to Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) pathogenesis. Abundant evidence supports the notion that CCAAT/enhancer-binding protein β (C/EBPβ)/AEP may play an important role in NDDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!