Subchondral bone provides structural support to the overlying articular cartilage, and plays an important role in osteochondral diseases. There is growing insight that the mechanical features of bone are related to the biochemistry of the collagen network and the mineral content. In the present study, part of the normal developmental process and the influence of physical activity on biochemical composition of subchondral bone was studied. Water content, calcium content and characteristics of the collagen network (collagen, hydroxylysine, lysylpyridinoline (LP) and hydroxylysylpyridinoline (HP) crosslinking) of subchondral bone were measured in newborn foals, 5-month-old foals (pasture-grown and box-confined) and 11-month-old foals at 2 differently loaded sites of the proximal articular surface of the first phalanx. During the first 5 months postpartum, water and hydroxylysine content decreased significantly while calcium and collagen content and the amount of HP and LP crosslinks increased significantly. The withholding of physical activity during this developmental phase affected the biochemical characteristics of subchondral bone only at the site that is loaded during physical exercise. At this site, calcium content and both HP and LP crosslink levels increased significantly less than in pasture-raised animals. During development from 5-11 months, measured parameters remained essentially constant, except for water content, which decreased further. It is concluded that substantial changes, presumed to be largely exercise-driven, take place during the normal process of development in the biochemical composition of equine subchondral bone. Normal development of subchondral bone is presumably important for the normal functional adaptation of this bone to the loading conditions it is subjected to and therefore essential to resist the future biomechanical challenges the horse will encounter during its athletic career. The findings from this study and the assumed important role of subchondral bone quality in the pathogenesis of osteochondral disease merit more attention to the role of the collagen network in subchondral bone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2746/042516402776767150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!