The formation of dentin provides one well accepted paradigm for studying mineralized tissue formation. For the assembly of dentin, several cellular signaling pathways cooperate to provide neural crest-derived mesenchymal cells with positional information. Further, "cross-talk" between signaling pathways from the mesenchymal derived odontoblast cells and the epithelially derived ameloblasts during development is responsible for the formation of functional odontoblasts. These intercellular signals are tightly regulated, both temporally and spatially. When isolated from the developing tooth germ, odontoblasts quickly lose their potential to maintain the odontoblast-specific phenotype. Therefore, generation of an odontoblast cell line would be a valuable reproducible tool for studying the modulatory effects involved in odontoblast differentiation as well as the molecular events involved in mineralized dentin formation. In this study an immortalized odontoblast cell line, which has the required biochemical machinery to produce mineralized tissue in vitro, has been generated. These cells were implanted into animal models to determine their in vivo effects on dentin formation. After implantation, we observed a multistep, programmed cascade of gene expression in the exogenous odontoblasts as the dentin formed de novo. Some of the genes expressed include the dentin matrix proteins 1, 2, and 3, which are extracellular matrix molecules responsible for the ultimate formation of mineralized dentin. The biological response was also examined by histology and radiography and confirmed for mineral deposition by von Kossa staining. Thus, a transformed odontoblast cell line was created with high proliferative capacity that might ultimately be used for the regeneration and repair of dentin in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M112223200 | DOI Listing |
J Oral Biosci
December 2024
Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
Objectives: Dental pulp stem cells (DPSCs) are essential for reparative dentinogenesis following damage or infection. DPSCs surrounding the blood vessels in the central region of the dental pulp actively proliferate after tooth injury and differentiate into new odontoblast-like cells or odontoblasts to form reparative dentin. However, the signaling pathways involved in undifferentiated and osteodifferentiated DPSCs under inflammatory conditions remain unclear.
View Article and Find Full Text PDFCell Biochem Biophys
December 2024
Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
Apical periodontitis is an inflammatory disease caused by bacterial infection in the root canal that spreads to the apical periodontal tissues, resulting in bone resorption around the root apex as the disease progresses. Vascular endothelial growth factor (VEGF), a growth factor involved in angiogenesis, plays an important role in bone remodeling. We reported that caffeic acid phenethyl ester (CAPE), a bioactive substance of propolis, induces VEGF in odontoblast-like cells and dental pulp cells.
View Article and Find Full Text PDFFront Oral Health
December 2024
School of Stomatology, Southwest Medical University, Lu Zhou, China.
Introduction: Tissue repair can be promoted by moderate inflammation but suppressed by excessive levels. Therefore, control of excessive inflammation following removal of infection plays a critical role in promotion of pulpal repair. Connexin 43 (Cx43) forms hemichannels (HCs) or gap channels (GJs) to facilitate the delivery of small molecules between cells to regulate both inflammation and repair.
View Article and Find Full Text PDFJ Clin Med
November 2024
Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan.
Dental pulp (DP) is a connective tissue composed of various cell types, including fibroblasts, neurons, adipocytes, endothelial cells, and odontoblasts. It contains a rich supply of pluripotent stem cells, making it an important resource for cell-based regenerative medicine. However, current stem cell collection methods rely heavily on the enzymatic digestion of dissected DP tissue to isolate and propagate primary cells, which often results in low recovery rates and reduced cell survival, particularly from deciduous teeth.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany.
Human peroxisomal biogenesis disorders of the Zellweger syndrome spectrum affect skeletal development and induce tooth malformations. Whereas several peroxisomal knockout mouse studies elucidated the pathogenesis of skeletal defects, little information is available on how dental pathologies arise in peroxisomal biogenesis disorder patients. To understand the impact of severe peroxisomal dysfunction on early odontogenesis, here we performed morphometric studies on developing molars of new-born Pex11b knockout mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!