Background: Both microgravity and simulated microgravity models, such as the 45HDT (45 degrees head-down tilt), cause a redistribution of body fluids indicating a possible adaptive process to the microgravity stressor. Understanding the physiological processes that occur in microgravity is a first step to developing countermeasures to stop its harmful effects, i.e., (edema, motion sickness) during long-term space flights.

Hypothesis: Because of the kidneys' functional role in the regulation of fluid volume in the body, it plays a key role in the body's adaptation to microgravity.

Methods: Rats were injected intramuscularly with a radioactive tracer and then lightly anesthetized in order to facilitate their placement in the 45HDT position. They were then placed in the 45HDT position using a specially designed ramp (45HDT group) or prone position (control group) for an experimental time period of 1 h. During this period, the 99mTc-DTPA (technetium-labeled diethylenepentaacetate, MW=492 amu, physical half-life of 6.02 h) radioactive tracer clearance rate was determined by measuring gamma counts per minute. The kidneys were then fixed and sectioned for electron microscopy. A point counting method was used to quantitate intracellular spaces of the kidney proximal tubules.

Results: 45HDT animals show a significantly (p=0.0001) increased area in the interstitial space of the proximal tubules.

Conclusions: There are significant changes in the kidneys during a 1 h exposure to a simulated microgravity environment that consist primarily of anatomical alterations in the kidney proximal tubules. The kidneys also appear to respond differently to the initial periods of head-down tilt.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0094-5765(01)00186-2DOI Listing

Publication Analysis

Top Keywords

simulated microgravity
8
head-down tilt
8
radioactive tracer
8
45hdt position
8
kidney proximal
8
microgravity
5
45hdt
5
early renal
4
renal changes
4
changes degrees
4

Similar Publications

Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses.

View Article and Find Full Text PDF

Moxifloxacin plus Cordyceps polysaccharide ameliorate intestinal barrier damage due to abdominal infection via anti-inflammation and immune regulation under simulated microgravity.

Life Sci Space Res (Amst)

February 2025

Department of General Surgery, the 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, PR China; Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China. Electronic address:

Background: Currently, there is limited research on the impact of abdominal infection on intestinal damage under microgravity conditions. Cordyceps polysaccharide (CPS), the main active ingredient of Cordyceps, has demonstrated various pharmacological effects, including anti-inflammatory, antioxidant, and immunomodulatory properties. Moxifloxacin (MXF) is a fourth-generation quinolone antibiotic that is believed to have a dual regulatory effect on immune system activation and suppression.

View Article and Find Full Text PDF

Space missions have revealed certain disincentive factors of this unique environment, such as microgravity, cosmic radiation, etc., as the aerospace industry has made substantial progress in exploring deep space and its impacts on human body. Galactic cosmic radiation (GCR), a form of ionizing radiation, is one of those environmental factors that has potential health implications and, as a result, may limit the duration - and possibly the occurrence - of deep-space missions.

View Article and Find Full Text PDF

Integrated spaceflight transcriptomic analyses and simulated space experiments reveal key molecular features and functional changes driven by space stressors in space-flown C. elegans.

Life Sci Space Res (Amst)

February 2025

Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.

The space environment presents unique stressors, such as microgravity and space radiation, which can induce molecular and physiological changes in living organisms. To identify key reproducible transcriptomic features and explore potential biological roles in space-flown C. elegans, we integrated transcriptomic data from C.

View Article and Find Full Text PDF

Introduction: In space, under weightlessness conditions, human brain activity is changed due to the shifting of body fluid and blood toward the cephalic region. This shifting leads to changes in cerebral hemodynamics and, consequently, neurophysiological function, which impacts mental functions like cognition and decision-making capabilities of space travelers. The present study reports the effect of acute exposure to simulated microgravity on cognitive functions and event-related potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!