We have shown that ginsenoside Rf (Rf) regulates voltage-dependent Ca(2+) channels through pertussis toxin (PTX)-sensitive G proteins in rat sensory neurons. These results suggest that Rf can act through a novel G protein-linked receptor in the nervous system. In the present study, we further examined the effect of Rf on G protein-coupled inwardly rectifying K(+) (GIRK) channels after coexpression with size-fractionated rat brain mRNA and GIRK1 and GIRK4 (GIRK1/4) channel cRNAs in Xenopus laevis oocytes using two-electrode voltage-clamp techniques. We found that Rf activated GIRK channel in a dose-dependent and reversible manner after coexpression with subfractions of rat brain mRNA and GIRK1/4 channel cRNAs. This Rf-evoked current was blocked by Ba(2+), a potassium channel blocker. The size of rat brain mRNA responding to Rf was about 6 to 7 kilobases. However, Rf did not evoke GIRK current after injection with this subfraction of rat brain mRNA or GIRK1/4 channel cRNAs alone. Other ginsenosides, such as Rb(1) and Rg(1), evoked only slight induction of GIRK currents after coexpression with the subfraction of rat brain mRNA and GIRK1/4 channel cRNAs. Acetylcholine and serotonin almost did not induce GIRK currents after coexpression with the subfraction of rat brain mRNA and GIRK1/4 channel cRNAs. Rf-evoked GIRK currents were not altered by PTX pretreatment but were suppressed by intracellularly injected guanosine-5'-(2-O-thio) diphosphate, a nonhydrolyzable GDP analog. These results indicate that Rf activates GIRK channel through an unidentified G protein-coupled receptor in rat brain and that this receptor can be cloned by the expression method demonstrated here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.61.4.928 | DOI Listing |
Neurosurg Rev
January 2025
Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-77, Tamil Nadu, India.
Toxicol Ind Health
January 2025
Department of of Toxicology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Turkey.
Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60).
View Article and Find Full Text PDFJ Endocrinol
January 2025
K Soma, Psychology, The University of British Columbia, Vancouver, V6T 1Z4, Canada.
Maternal diet has long-term effects on offspring brain development and behavior. Sucrose (table sugar) intakes are high in modern diets, but it is not clear how a maternal high-sucrose diet (HSD) affects the offspring. In rats, a maternal HSD (26% of calories from sucrose, which is human-relevant) alters maternal metabolism and brain and also alters adult offspring endocrinology and behavior in a sex-specific manner.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Anesthesia, Fujian Medical University Union Hospital, Fuzhou, China.
In this study, we aimed to explore the sex-specific effects and mechanisms of sevoflurane exposure on the neural development of pubertal rats on the basis of M1/M2 microglial cell polarisation and related signalling pathways. A total of 48 rat pups (24 males and 24 females) were assigned to the 0- or 2-h sevoflurane exposure group on the seventh day after birth. The Morris water maze (MWM) test was subsequently conducted on the 32nd to 38th days after birth.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6845, Australia.
Natural aging is associated with mild memory loss and cognitive decline, and age is the greatest risk factor for neurodegenerative diseases, such as Alzheimer's disease. There is substantial evidence that oxidative stress is a major contributor to both natural aging and neurodegenerative disease, and coincidently, levels of redox active metals such as Fe and Cu are known to be elevated later in life. Recently, a pronounced age-related increase in Cu content has been reported to occur in mice and rats around a vital regulatory brain region, the subventricular zone of lateral ventricles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!