Small molecules provide powerful tools to interrogate biological pathways but many important pathway participants remain refractory to inhibitors. For example, Cdc25 dual-specificity phosphatases regulate mammalian cell cycle progression and are implicated in oncogenesis, but potent and selective inhibitors are lacking for this enzyme class. Thus, we evaluated 10,070 compounds in a publicly available chemical repository of the National Cancer Institute for in vitro inhibitory activity against oncogenic, full-length, recombinant human Cdc25B. Twenty-one compounds had mean inhibitory concentrations of <1 microM; >75% were quinones and >40% were of the para-naphthoquinone structural type. Most notable was NSC 95397 (2,3-bis-[2-hydroxyethylsulfanyl]-[1,4]naphthoquinone), which displayed mixed inhibition kinetics with in vitro K(i) values for Cdc25A, -B, and -C of 32, 96, and 40 nM, respectively. NSC 95397 was more potent than any inhibitor of dual specificity phosphatases described previously and 125- to 180-fold more selective for Cdc25A than VH1-related dual-specificity phosphatase or protein tyrosine phosphatase 1b, respectively. Modification of the bis-thioethanol moiety markedly decreased enzyme inhibitory activity, indicating its importance for bioactivity. NSC 95397 showed significant growth inhibition against human and murine carcinoma cells and blocked G(2)/M phase transition. A potential Cdc25 site of interaction was postulated based on molecular modeling with these quinones. We propose that inhibitors based on this chemical structure could serve as useful tools to probe the biological function of Cdc25.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.61.4.720 | DOI Listing |
Replication origin assembly is a pivotal step in chromosomal DNA replication. In this process, the ORC complex binds DNA and, together with the CDC6 and CDT1, promotes the loading of the MCM helicase. Chemicals targeting origin assembly might be useful to sensitize highly proliferative cancer cells.
View Article and Find Full Text PDFPhytomedicine
November 2021
National centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China. Electronic address:
Background: Shaoyao decoction (SYD), a traditional Chinese medicine prescription that originated in the Jin-Yuan Dynasty, has shown effects in treating ulcerative colitis. However, the underlying mechanism is unclear. We combined network pharmacology with molecular biology technology to detect the mechanism underlying the effect of SYD on ulcerative colitis.
View Article and Find Full Text PDFEur J Med Chem
December 2019
Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA. Electronic address:
Cell division cycle 25 (Cdc25) and mitogen-activated protein kinase kinase 7 (MKK7) are enzymes involved in intracellular signaling but can also contribute to tumorigenesis. We synthesized and characterized the biological activity of 1,4-naphthoquinones structurally similar to reported Cdc25 and(or) MKK7 inhibitors with anticancer activity. Compound 7 (3-[(1,4-dioxonaphthalen-2-yl)sulfanyl]propanoic acid) exhibited high binding affinity for MKK7 (K = 230 nM), which was greater than the affinity of NSC 95397 (K = 1.
View Article and Find Full Text PDFAcc Chem Res
March 2019
Department of Biochemistry and Molecular Pharmacology , UMass Medical School, 364 Plantation Street , Worcester , Massachusetts 01605 , United States.
Proteins are well-known to undergo a variety of post-translational modifications (PTMs). One such PTM is citrullination, an arginine modification that is catalyzed by a group of hydrolases called protein arginine deiminases (PADs). Hundreds of proteins are known to be citrullinated and hypercitrullination is associated with autoimmune diseases including rheumatoid arthritis (RA), lupus, ulcerative colitis (UC), Alzheimer's disease, multiple sclerosis (MS), and certain cancers.
View Article and Find Full Text PDFToxicol Appl Pharmacol
March 2019
Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan. Electronic address:
Metastasis is the major cause of treatment failure in patients with cancer. Hinokitiol, a metal chelator derived from natural plants, has anti-inflammatory and antioxidant activities as well as anticancer effects. We investigated the potential anticancer effects of hinokitiol in metastatic melanoma cell line B16-F10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!