Fission yeast mutants affecting telomere clustering and meiosis-specific spindle pole body integrity.

Genetics

Department of Molecular and Cell Biology, University of California, Berkeley, California 94732, USA.

Published: March 2002

In meiotic prophase of many eukaryotic organisms, telomeres attach to the nuclear envelope and form a polarized configuration called the bouquet. Bouquet formation is hypothesized to facilitate homologous chromosome pairing. In fission yeast, bouquet formation and telomere clustering occurs in karyogamy and persists throughout the horsetail stage. Here we report the isolation and characterization of six mutants from our screen for meiotic mutants. These mutants show defective telomere clustering as demonstrated by mislocalization of Swi6::GFP, a heterochromatin-binding protein, and Taz1p::GFP, a telomere-specific protein. These mutants define four complementation groups and are named dot1 to dot4-defective organization of telomeres. dot3 and dot4 are allelic to mat1-Mm and mei4, respectively. Immunolocalization of Sad1, a protein associated with the spindle pole body (SPB), in dot mutants showed an elevated frequency of multiple Sad1-nuclei signals relative to wild type. Many of these Sad1 foci were colocalized with Taz1::GFP. Impaired SPB structure and function were further demonstrated by failure of spore wall formation in dot1, by multiple Pcp1::GFP signals (an SPB component) in dot2, and by abnormal microtubule organizations during meiosis in dot mutants. The coincidence of impaired SPB functions with defective telomere clustering suggests a link between the SPB and the telomere cluster.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1462000PMC
http://dx.doi.org/10.1093/genetics/160.3.861DOI Listing

Publication Analysis

Top Keywords

telomere clustering
16
fission yeast
8
spindle pole
8
pole body
8
bouquet formation
8
defective telomere
8
dot mutants
8
impaired spb
8
mutants
7
telomere
5

Similar Publications

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin- Kit+ Sca1+ CD150+).

View Article and Find Full Text PDF

Dealing with infections is a daily challenge for wild animals. Empirical data show an increase in reactive oxygen species (ROS) production during immune response. This could have consequences on telomere length, the end parts of linear chromosomes, commonly used as proxy for good health and ageing.

View Article and Find Full Text PDF

Dynamic Genomic Imaging and Tracking in Living Cells by a DNA Origami-Based CRISPR‒dCas9 System.

Small Methods

January 2025

Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

The clustered regularly interspaced short palindromic repeat (CRISPR)-associated system has displayed promise in visualizing the dynamics of target loci in living cells, which is important for studying genome regulation. However, developing a cell-friendly and rapid transfection method for achieving dynamic and long-term genomic imaging in living cells with high specificity and accuracy is still challenging. Herein, a robust and versatile method is presented that employs a barrel-shaped DNA nanostructure (TUBE) modified with aptamers for loading, protecting, and delivering CRISPR-Cas9 to visualize specific genomic loci in living cells.

View Article and Find Full Text PDF

Danio rerio, commonly known as zebrafish, is an established model organism for the developmental and cell biology studies. Although significant progress has been made in the analysis of the D. rerio genome, cytogenetic studies face challenges due to the unclear identification of chromosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!