Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been shown that nondepolarizing muscle relaxants may have effects on nicotinic acetylcholine receptors (nAChRs) other than those located on the skeletal muscle: some of them possess inhibitory effects on neuronal nAChRs [Anesth. Analg. 59 (1980) 935; Trends Pharmacol. Sci. 9 (1988) 16; Pharmacol. Ther. 73 (1997) 75]. It was shown that, e.g. (+)-tubocurarine and pancuronium are able to inhibit ACh release from the axon terminals of hemidiaphragm preparations and produce tetanic fade indicating their presynaptic effect. In this study rocuronium, a nondepolarizing steroidal muscle relaxant with shorter onset of action, and SZ1677 [1-(3alpha-hydroxy-17beta-acetyloxy)-2beta-(1.4-dioxa-8-azaspiro-[4,5]-dec-8-yl)-(5alpha-androstane-16beta-yl)-1-(2-propenyl) pyrrolidinium bromide], a short-acting muscle relaxant [Ann. New York Acad. Sci. 757 (1995b) 84] inhibited the release of ACh in response to axonal stimulation, while alpha-bungarotoxin failed to reduce the stimulation evoked release of ACh and did not produce tetanic fade. These results indicate that in addition to their postsynaptic effect, rocuronium and SZ1677 have presynaptic inhibitory effects on neuronal nAChRs at the neuromuscular junction. The finding that alpha-bungarotoxin does not inhibit the release and does not produce tetanic fade indicates that it possesses affinity only for the postsynaptic muscle nAChRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0197-0186(01)00111-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!