Although members of the protein tyrosine phosphatase (PTPase) family share a common mechanism of action (hydrolysis of phosphotyrosine), the cellular processes in which they are involved can be both highly specialized and fundamentally important. Identification of cellular PTPase substrates will help elucidate the biological functions of individual PTPases. Two types of substrate-trapping mutants are being used to isolate PTPase substrates. In the first, the active site Cys residue is replaced by a Ser (e.g., PTP1B/C215S) while in the second, the general acid Asp residue is substituted by an Ala (e.g., PTP1B/D181A). Unfortunately, only a limited number of PTPase substrates have been identified with these two mutants, which are usually relatively abundant cellular proteins. Based on mechanistic considerations, we seek to create novel PTPase mutants with improved substrate-trapping properties. Kinetic and thermodynamic characterization of the newly designed PTP1B mutants indicates that PTP1B/D181A/Q262A displays lower catalytic activity than that of D181A. In addition, D181A/Q262A also possesses 6- and 28-fold higher substrate-binding affinity than those of D181A and C215S, respectively. In vivo substrate-trapping experiments indicate that D181A/Q262A exhibits much higher affinity than both D181A and C215S for a bona fide PTP1B substrate, the epidermal growth factor receptor. Moreover, D181A/Q262A can also identify novel, less abundant substrates, that are missed by D181A. Thus, this newly developed and improved substrate-trapping mutant can serve as a powerful affinity reagent to isolate and purify both high- and low-abundant protein substrates. Given that both Asp181 and Gln262 are invariant among the PTPase family, it is predicted that this improved substrate-trapping mutant would be applicable to all members of PTPases for substrate identification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi015904r | DOI Listing |
Nat Protoc
October 2024
Department of Oncology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Centre for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Catalytic mechanism-based, light-activated traps have recently been developed to identify the substrates of cysteine or serine hydrolases. These traps are hydrolase mutants whose catalytic cysteine or serine are replaced with genetically encoded 2,3-diaminopropionic acid (DAP). DAP-containing hydrolases specifically capture the transient thioester- or ester-linked acyl-enzyme intermediates resulting from the first step of the proteolytic reaction as their stable amide analogs.
View Article and Find Full Text PDFMethods Mol Biol
December 2023
Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
Protein tyrosine phosphorylation and dephosphorylation are key regulatory mechanisms in eukaryotes. Protein tyrosine phosphorylation and dephosphorylation are catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. The combinatorial action of both PTKs and PTPs is essential for properly maintaining cellular functions.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
December 2023
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, United States.
High-grade serous ovarian cancer (HGSOC) is the deadliest gynecologic malignancy in women. The low survival rate is largely due to drug resistance. Approximately 80% of patients who initially respond to treatment relapse and become drug-resistant.
View Article and Find Full Text PDFMol Cell Biol
December 2023
Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico.
PTP1B plays a key role in developing different types of cancer. However, the molecular mechanism underlying this effect is unclear. To identify molecular targets of PTP1B that mediate its role in tumorigenesis, we undertook a SILAC-based phosphoproteomic approach, which allowed us to identify Cdk3 as a novel PTP1B substrate.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2024
Department of Nutrition, University of California Davis, Davis, CA, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA. Electronic address:
Glomerular podocytes are instrumental for the barrier function of the kidney, and podocyte injury contributes to proteinuria and the deterioration of renal function. Protein tyrosine phosphatase 1B (PTP1B) is an established metabolic regulator, and the inactivation of this phosphatase mitigates podocyte injury. However, there is a paucity of data regarding the substrates that mediate PTP1B actions in podocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!