Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4615-1321-6_19 | DOI Listing |
Front Mol Med
January 2025
Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.
Immune-checkpoint-inhibitors (ICI) target key regulators of the immune system expressed by cancer cells that mask those from recognition by the immune system. They have improved the outcome for patients with various cancer types, such as melanoma. ICI-based therapy is frequently accompanied by immune-related adverse side effects (IRAEs).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
The association between serum uric acid (UA) levels and left ventricular hypertrophy (LVH) remains unclear. We aimed to investigate this association using electrocardiographic findings. Health examination data from Kagoshima Kouseiren Hospital included 79,200 participants without cardiovascular diseases.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology Bahir Dar University Bahir Dar Ethiopia.
Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin.
View Article and Find Full Text PDFDiets influence metabolism and disease susceptibility, with lysine acetyltransferases (KATs) serving as key regulators through acetyl-CoA. We have previously demonstrated that a ketogenic diet alleviates cardiac pathology, though the underlying mechanisms remain largely unknown. Here we show that KAT6A acetylation is crucial for mitochondrial function and cell growth.
View Article and Find Full Text PDFiScience
January 2025
Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!