The visual process is initiated by the photoisomerization of 11-cis-retinal to all-trans-retinal. For sustained vision the 11-cis-chromophore must be regenerated from all-trans-retinal. This requires RPE65, a dominant retinal pigment epithelium protein. Disruption of the RPE65 gene results in massive accumulation of all-trans-retinyl esters in the retinal pigment epithelium, lack of 11-cis-retinal and therefore rhodopsin, and ultimately blindness. We reported previously (Van Hooser, J. P., Aleman, T. S., He, Y. G., Cideciyan, A. V., Kuksa, V., Pittler, S. J., Stone, E. M., Jacobson, S. G., and Palczewski, K. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 8623-8628) that in Rpe65-/- mice, oral administration of 9-cis-retinal generated isorhodopsin, a rod photopigment, and restored light sensitivity to the electroretinogram. Here, we provide evidence that early intervention by 9-cis-retinal administration significantly attenuated retinal ester accumulation and supported rod retinal function for more than 6 months post-treatment. In single cell recordings rod light sensitivity was shown to be a function of the amount of regenerated isorhodopsin; high doses restored rod responses with normal sensitivity and kinetics. Highly attenuated residual rod function was observed in untreated Rpe65-/- mice. This rod function is likely a consequence of low efficiency production of 11-cis-retinal by photo-conversion of all-trans-retinal in the retina as demonstrated by retinoid analysis. These studies show that pharmacological intervention produces long lasting preservation of visual function in dark-reared Rpe65-/- mice and may be a useful therapeutic strategy in recovering vision in humans diagnosed with Leber congenital amaurosis caused by mutations in the RPE65 gene, an inherited group of early onset blinding and retinal degenerations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470660 | PMC |
http://dx.doi.org/10.1074/jbc.M112384200 | DOI Listing |
bioRxiv
December 2024
Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.
Purpose: Pigment epithelium-derived factor (PEDF) is a neurotrophic glycoprotein secreted by the retinal pigment epithelium (RPE) that supports retinal photoreceptor health. Deficits in PEDF are associated with increased inflammation and retinal degeneration in aging and diabetic retinopathy. We hypothesized that light-induced stress in C57BL/6J mice deficient in PEDF would lead to increased retinal neuronal and RPE defects, impaired expression of neurotrophic factor Insulin-like growth factor 1 (IGF-1), and overactivation of Galectin-3-mediated inflammatory signaling.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA 92617.
Rhodopsin, the prototypical class-A G-protein coupled receptor, is a highly sensitive receptor for light that enables phototransduction in rod photoreceptors. Rhodopsin plays not only a sensory role but also a structural role as a major component of the rod outer segment disc, comprising over 90% of the protein content of the disc membrane. Mutations in which lead to structural or functional abnormalities, including the autosomal recessive E150K mutation, result in rod dysfunction and death.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the and genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models.
View Article and Find Full Text PDFMol Cell Proteomics
November 2024
School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!