The reaction of cyanide, carbon monoxide, and ferrous derivatives led to the isolation of three products, trans- and cis-[Fe(CN)(4)(CO)(2)](2)(-) and [Fe(CN)(5)(CO)](3)(-), the first two of which were characterized by single-crystal X-ray diffraction. The new compounds show self-consistent IR, (13)C NMR, and mass spectroscopic properties. The reaction of trans-[Fe(CN)(4)(CO)(2)](2)(-) with Et(4)NCN gives [Fe(CN)(5)(CO)](3)(-) via a first-order (dissociative) pathway. The corresponding cyanation of cis-[Fe(CN)(4)(CO)(2)](2)(-), which is a minor product of the Fe(II)/CN(-)/CO reaction, does not proceed at measurable rates. Methylation of [Fe(CN)(5)(CO)](3)(-) gave exclusively cis-[Fe(CN)(4)(CNMe)(CO)](2)(-), demonstrating the enhanced nucleophilicity of CN(-) trans to CN(-) vs. CN(-) trans to CO. Methylation has an electronic effect similar to that of protonation as determined electrochemically. We also characterized [M(CN)(3)(CO)(3)](n)(-) for Ru (n = 1) and Mn (n = 2) derivatives. The Ru complex, which is new, was prepared by cyanation of a [RuCl(2)(CO)(3)](2) solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic011030lDOI Listing

Publication Analysis

Top Keywords

cn- trans
8
preparative structural
4
structural studies
4
studies carbonyl
4
carbonyl cyanides
4
cyanides iron
4
iron manganese
4
manganese ruthenium
4
ruthenium fundamentals
4
fundamentals relevant
4

Similar Publications

Molecular mechanisms of cis-oxygen bridge neonicotinoids to Apis mellifera Linnaeus chemosensory protein: Surface plasmon resonance, multiple spectroscopy techniques, and molecular modeling.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.

View Article and Find Full Text PDF

High temperature (HT) stress causes male sterility, leading to reduced upland cotton yield. Previously, we identified a key gene, Casein Kinase I (GhCKI), that negatively regulates male fertility in upland cotton under HT. However, conventional genetic manipulations of GhCKI would result in male sterility, hindering its utilization in breeding programs.

View Article and Find Full Text PDF

Fe-N-C catalysts are considered promising substitutes for Pt-based catalysts at the cathode in direct methanol fuel cells (DMFCs) owing to their great methanol tolerance. However, Fe-N-C-based DMFCs commonly suffer from a decreased performance under extremely high methanol concentrations and exhibit poor stability, while the underlying mechanism remains controversial. In this study, a self-degradation phenomenon in a passive Fe-N-C-based DMFC was investigated in detail.

View Article and Find Full Text PDF

For tolerant containment control of multi-agent systems, considering the challenges in modeling and the impact of actuator faults on system security and reliability, a finite index dynamic event-triggered policy iteration algorithm is proposed. This algorithm only requires input and output data, without relying on system models, and simultaneously considers the faults and energy consumption issues to improve the system reliability and save energy consumption. The conditions are provided to demonstrate the convergence and optimality of the algorithm, including a convergence speed, that is, the number of iterations required for convergence is finite.

View Article and Find Full Text PDF

An overview of sound source localization based condition monitoring robots.

ISA Trans

December 2024

Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK. Electronic address:

As artificial intelligence advances and demand for cost-effective equipment maintenance in various fields increases, it is worth insightful research on utilizing robots embedded with sound source localization (SSL) technology for condition monitoring. Combining the two techniques has significant advantages, which are conducive to further classifying and tracking abnormal sources, thereby enhancing system performance at a lower cost. The paper provides an overview of current acoustic-based robotic techniques for condition monitoring, highlights the common SSL methods, and finds that localization performance heavily depends on signal quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!