AI Article Synopsis

  • C57BL/6 Trp53 heterozygous mice (p53+/-) are more prone to tumors after exposure to harmful substances, making them useful for cancer research.
  • The study investigates how the lack of a complete p53 gene affects the expression of important genes linked to cell cycle control and apoptosis in bone marrow cells when exposed to chronic genotoxic stress, specifically inhaled benzene.
  • Results show that p53+/- mice have lower levels of key p53-regulated genes compared to normal mice, indicating they exhibit a haploinsufficient phenotype that impairs their ability to respond to DNA damage.

Article Abstract

C57BL/6 Trp53 heterozygous (N5) mice (p53+/- mice) show an increased sensitivity to tumorigenesis following exposure to genotoxic compounds and are being used as an alternate animal model for carcinogenicity testing. However, there is relatively little data regarding the effect of p53 heterozygosity on the genomic and cellular responses of target tissues in these mice to toxic insult, especially under chronic exposure conditions used in carcinogenicity bioassays. We hypothesized that heterozygosity at the p53 locus in p53+/- mice alters the expression of bone marrow p53-regulated genes involved in cell cycle control and apoptosis during chronic genotoxic stress. We used real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) to examine gene expression alterations in bone marrow cells from C57BL/6 p53+/+ and isogenic p53+/- mice chronically exposed for 15 weeks to genotoxic and carcinogenic levels (100 ppm) of inhaled benzene. Examination of mRNA levels of p53-regulated genes involved in cell cycle control (p21, gadd45, and cyclin G) or apoptosis (bax and bcl-2) showed that during chronic genotoxic stress, bone marrow cells from p53+/+ mice expressed significantly higher levels of a majority of these genes compared to p53+/- bone marrow cells. Our results indicate that p53 heterozygosity results in a haploinsufficient phenotype in p53+/- bone marrow cells as evident by significantly altered mRNA levels of key genes involved in the p53-regulated DNA damage response pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/66.2.209DOI Listing

Publication Analysis

Top Keywords

bone marrow
24
marrow cells
16
p53 heterozygosity
12
p53+/- mice
12
genes involved
12
inhaled benzene
8
p53-regulated genes
8
involved cell
8
cell cycle
8
cycle control
8

Similar Publications

Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.

View Article and Find Full Text PDF

Erythropoiesis, a remarkably dynamic and efficient process responsible for generating the daily quota of red blood cells (approximately 280 ± 20 billion cells per day), is crucial for maintaining individual health. Any disruption in this pathway can have significant consequences, leading to health issues. According to the World Health Organization, an estimated 25% of the global population presents symptoms of anemia.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a bone-marrow-based cancer of plasma cells. Over the last 2 decades, marked treatment advances have led to improvements in the overall survival (OS) of patients with this disease. Key developments include the use of chemotherapy, immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies.

View Article and Find Full Text PDF

Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.

View Article and Find Full Text PDF

Introduction: Burkitt lymphoma (BL) is a rare and aggressive subtype of non-Hodgkin's lymphoma. Several studies have identified prognostic factors (PFs) for disease progression and mortality among adults with BL. However, there is no consensus on risk stratification based on PFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!