The K103N substitution is a frequently observed HIV-1 RT mutation in patients who do not respond to combination-therapy. The drugs Efavirenz, MSC194 and PNU142721 belong to the recent generation of NNRTIs characterized by an improved resistance profile to the most common single point mutations within HIV-1 RT, including the K103N mutation. In the present study we present structural observations from Efavirenz in complex with wild-type protein and the K103N mutant and PNU142721 and MSC194 in complex with the K103N mutant. The structures unanimously indicate that the K103N substitution induces only minor positional adjustments of the three inhibitors and the residues lining the binding pocket. Thus, compared to the corresponding wild-type structures, these inhibitors bind to the mutant in a conservative mode rather than through major rearrangements. The structures implicate that the reduced inhibitory efficacy should be attributed to the changes in the chemical environment in the vicinity of the substituted N103 residue. This is supported by changes in hydrophobic and electrostatic interactions to the inhibitors between wild-type and K103N mutant complexes. These potent inhibitors accommodate to the K103N mutation by forming new interactions to the N103 side chain. Our results are consistent with the proposal by Hsiou et al. [Hsiou, Y., Ding, J., Das, K., Clark, A.D. Jr, Boyer, P.L., Lewi, P., Janssen, P.A., Kleim, J.P., Rosner, M., Hughes, S.H. & Arnold, E. (2001) J. Mol. Biol. 309, 437-445] that inhibitors with good activity against the K103N mutant would be expected to have favorable interactions with the mutant asparagines side chain, thereby compensating for resistance caused by stabilization of the mutant enzyme due to a hydrogen-bond network involving the N103 and Y188 side chains.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1327.2002.02811.xDOI Listing

Publication Analysis

Top Keywords

k103n mutant
20
k103n
9
inhibitory efficacy
8
msc194 pnu142721
8
mutant
8
k103n substitution
8
k103n mutation
8
side chain
8
inhibitors
5
structural basis
4

Similar Publications

Considering the nonideal antiresistance efficacy of our previously reported non-nucleoside reverse transcriptase inhibitor , a series of novel piperidine-diarylpyrimidine derivatives were designed through expanding solvent/protein region occupation. The representative compound proved to be exceptionally potent against Y188L (EC = 23 nM), F227L + V106A (EC = 15 nM) and RES056 (EC = 45 nM), significantly better than . This analog exerted strong inhibition against wild-type HIV-1 (EC = 3 nM) and single mutant strains (L100I, K103N, Y181C, E138 K).

View Article and Find Full Text PDF

Graph neural networks (GNN) offer an alternative approach to boost the screening effectiveness in drug discovery. However, their efficacy is often hindered by limited datasets. To address this limitation, we introduced a robust GNN training framework, applied to various chemical databases to identify potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) against the challenging K103N-mutated HIV-1 RT.

View Article and Find Full Text PDF

Identification of novel diarylpyrimidine derivatives as potent HIV-1 non-nucleoside reverse transcriptase inhibitors against wild-type and K103N mutant viruses.

Eur J Med Chem

December 2024

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China. Electronic address:

HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) play a crucial role in combination antiretroviral therapy (cART). To further enhance their antiviral activity and anti-resistance properties, we developed a series of novel NNRTIs, by specifically targeting tolerant region I of the NNRTI binding pocket. Among them, compound 9t-2 displayed excellent anti-HIV-1 potency against wild-type and prevalent mutant strains with EC values between 0.

View Article and Find Full Text PDF
Article Synopsis
  • Doravirine (DOR) is a new HIV treatment that works against some drug-resistant strains, but its effectiveness against non-B subtypes like HIV-1 subtype C is not fully understood.
  • The study used South African data to examine how certain known mutations associated with resistance affect DOR susceptibility, finding that mutations such as V106M and Y188L significantly reduce DOR effectiveness.
  • The research emphasizes the importance of genotypic drug resistance testing before starting DOR-based therapy, especially in patients with a history of efavirenz or nevirapine treatment failures.*
View Article and Find Full Text PDF

Discovery of Novel Amino Acids (Analogues)-Substituted Thiophene[3,2-]pyrimidine Derivatives as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Design, Synthesis, and Biological Evaluation.

Int J Mol Sci

August 2024

Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China.

Inspired by our previous work on the modification of diarylpyrimidine-typed non-nucleoside reverse transcriptase inhibitors (NNRTIs) and the reported crystallographic studies, a series of novel amino acids (analogues)-substituted thiophene[3,2-]pyrimidine derivatives were designed and synthesized by targeting the solvent-exposed region of the NNRTI-binding pocket. The biological evaluation results showed that compound was the most active inhibitor, exhibiting moderate-to-excellent potency against HIV-1 wild-type (WT) and a panel of NNRTI-resistant strains, with EC values ranging from 0.042 μM to 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!