The aim of this study was to develop a method of obtaining the same levels of CT image noise for patients of various sizes to minimize radiation dose. Two CT systems were evaluated regarding noise characteristics using phantoms and dosimetric measurements. Both CT systems performed well at dose levels used in normal clinical imaging, but only one was found to be suitable for low radiation dose applications. The CT system with the lowest noise level was used for further detailed studies. A simple strategy for manual selection of patient-specific scan parameters, considering patient size and required image quality, was implemented and verified on 11 volunteers. Images were obtained with at least the prescribed image quality at significantly reduced radiation dose levels compared with standard scan parameters. Depending on the diameter of the tomographic section, i.e. size of the subject, the dose levels could be reduced to 1-45% of the radiation dose with standard scan parameters (120 kV, 250 mAs, 10 mm). The results indicate a general potential for dose reduction in CT for slim patients. For tissue volume determination, large dose reductions can be achieved by adjusting the scan parameters for each individual. The concept of patient-specific scan parameters could be fully automated in the CT system design, but would require the scan to be specified in terms of image quality rather than X-ray tube load.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1259/bjr.75.890.750140 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!