[reaction: see text] A simple and mild method for the coupling of aryl iodides and aliphatic alcohols that does not require the use of alkoxide bases is described. The reactions can be performed in neat alcohol. For more precious alcohols, the etherification was carried out in toluene as solvent using 2 equiv of alcohol. Additionally, the cross-coupling of an optically active benzylic alcohol with an unactivated aryl halide was demonstrated to proceed with complete retention of configuration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol025548k | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.
Motivated by the inherent benefits of synergistically combining electrochemical methodologies with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of benzyl chlorides with aryl halides, yielding chiral 1,1-diaryl compounds with good to excellent enantioselectivity. This catalytic reaction can not only be applied to aryl chlorides/bromides, which are challenging to access by other means, but also to benzyl chlorides containing silicon groups. Additionally, the absence of a sacrificial anode lays a foundation for scalability.
View Article and Find Full Text PDFInd Eng Chem Res
January 2025
Department of Chemistry, Physics, and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States.
An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
Stereocontrolled construction of tetrasubstituted olefins has been an attractive issue yet remains challenging for synthetic chemists. In this manuscript, alkynyl selenides, when treated with ArBCl, are subject to an exclusive 1,1-carboboration, affording tetrasubstituted alkenes with excellent levels of E-selectivity. Detailed mechanistic studies, supported by DFT calculations, elucidates the role of selenium in this 1,1-addition process.
View Article and Find Full Text PDFMolecules
January 2025
Université de Reims Champagne-Ardenne, CNRS, ICMR, 51097 Reims, France.
A straightforward synthetic route towards DAB-1 scaffolded dimeric iminosugars is described here, starting from readily available bis-glycosylamines. The method allows the integration of a variety of linkages (aryl, alkyl, polyethyleneglycol chains) between both iminosugars through the choice of the bis-amine used in the first step. Moreover, an additional substituent (allyl, ethynyl) may be inserted into the structure via nucleophilic addition of an organometallic reagent to the starting bis-glycosylamine.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Portland State University, Portland, Oregon 97201, United States.
Modular C-N coupling is a desirable way to construct -aryl carbamates, which are privileged scaffolds in active pharmaceutical ingredients. However, there are no broadly applicable metal-free methods for the-arylation of carbamates. Herein, we describe a metal-free approach that uses aryl(TMP)iodonium salts as arylation reagents for cyclic carbamates by exploiting the metal-like reactivity of iodine(III).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!