Truncations at the carboxyl termini of G protein-coupled receptors result in defective receptor biogenesis and comprise a number of inherited disorders. In order to evaluate the structural role of the C-terminus in G protein-coupled receptor biogenesis, we generated a series of deletion and substitution mutations in the dopamine D1 receptor and visualized receptor subcellular localization by fusion to a green fluorescent protein. Alanine substitutions of several hydrophobic residues within the proximal C-terminus resulted in receptor transport arrest in the ER. Agonist binding and coupling to adenylyl cyclase was also abolished. In contrast, substitutions conserving C-terminal hydrophobicity produced normal cell surface receptor expression, binding, and stimulatory function. A mechanism for the role of the C-terminus in D1 receptor transport was investigated by searching for candidate protein interactions. The D1 receptor was found to co-precipitate and associate in vitro directly with the gamma-subunit of the COPI coatomer complex. In vitro pull-down assays confirmed that only the D1 C-terminus is required for COPI association, and that identical mutations causing disruption of receptor transport to the cell surface also disrupted binding to COPI. Furthermore, conservative mutations in the D1 C-terminus restored COPI association just as they restored cell surface transport. These results suggest that association between the coatomer complex and hydrophobic residues within the proximal C-terminus of the D1 receptor may serve an important role in receptor transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1078/0171-9335-00222 | DOI Listing |
J Mol Histol
January 2025
Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).
View Article and Find Full Text PDFBiol Pharm Bull
January 2025
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined.
View Article and Find Full Text PDFPharmacol Res
January 2025
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China. Electronic address:
T-cell lymphomas (TCLs) are heterogeneous malignancies with limited treatment options and poor outcomes. The efficacy of traditional T-cell therapies, including chimeric antigen receptor (CAR) T cells, is often constrained by immunosuppressive factors and the tumor microenvironment. On the other hand, although direct Granzyme B (GrB) administration can effectively induce tumor cell apoptosis, it lacks universal tumor targeting and efficient cellular entry mechanisms.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Deparment of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Antibody-drug conjugates (ADC) have emerged as an important class of therapeutic agents that combine the target specificity of a monoclonal antibody with the potency of a cytotoxic payload. Despite clinical success, our understanding of receptor endocytosis and ADC toxicity remains limited. Less than 1% of ADCs reach tumors, raising concerns about off-target cytotoxicity.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD Maastricht, The Netherlands.
As the main inhibitory neurotransmission system, the GABAergic system poses an interesting yet underutilized target for molecular brain imaging. While PET imaging of postsynaptic GABAergic neurons has been accomplished using radiolabeled benzodiazepines targeting the GABA receptor, the development of presynaptic radioligands targeting GABA transporter 1 (GAT1) has been unsuccessful thus far. Therefore, we developed a novel GAT1-addressing radioligand and investigated its applicability as a PET tracer in rodents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!