Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The bicyclo[2.2.2]oct-2-ene radical cation (1(.+)) exhibits matrix ESR spectra that have two very different types of gamma-exo hydrogens (those hydrogens formally in a W-plan with the alkene pi bond), a(2H) about 16.9 G and a(2H) about 1.9 G, instead of the four equivalent hydrogens as would be the case in an untwisted C(2v) structure. Moreover, deuterium substitution showed that the vinyl ESR splitting is not resolved (and under about 3.5 G); this is also a result of the twist. Enantiomerization of the C(2) structures is rapid on the ESR timescale above 110 K (barrier estimated at 2.0 kcalmol(-1)). Density functional theory calculations estimate the twist angle at the double bond to be 11-12 degrees and the barrier as 1.2-2.0 kcalmol(-1). Single-configuration restricted Hartree-Fock (RHF) calculations at all levels that were tried give untwisted C(2v) structures for 1(.+), while RHF calculations that include configuration interactions (CI) demonstrate that this system undergoes twisting because of a pseudo Jahn-Teller effect (PJTE). Significantly, twisting does not occur until the sigma-orbital of the predicted symmetry is included in the CI active space. UHF calculations at all levels that include electron correlation (even semiempirical) predict twisting at the alkene pi bond because they allow the filled alpha and the beta hole of the SOMO to have different geometries. The 2,3-dimethylbicyclo[2.2.2]oct-2-ene radical cation (2(.+)) is twisted significantly less than 1(.+), but has a similar temperature for maximum line broadening. Neither the 2,3-dioxabicyclo[2.2.2]octane radical cation (3(.+)) nor its 2,3-dimethyl-2,3-diaza analogue (5(.+)) shows any evidence of twisting. Calculations show that the orbital energy gap between the SOMO and PJTE-active orbitals for 3(.+) is too large for significant PJTE stabilization to occur.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1521-3765(20020301)8:5<1074::aid-chem1074>3.0.co;2-k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!