Overexpression of murine phosphatidylinositol 4-phosphate 5-kinase type Ibeta disrupts a phosphatidylinositol 4,5 bisphosphate regulated endosomal pathway.

J Cell Biochem

Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, School of Medicine in Shreveport, Shreveport, Louisiana 71130, USA.

Published: June 2002

The type I phosphatidylinositol 4-phosphate 5-kinases (PI4P5K) phosphorylate phosphatidylinositol 4-phosphate [PI(4)P] to produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. PI(4,5)P2 has been implicated in signal transduction, receptor mediated endocytosis, vesicle trafficking, cytoskeletal structure, and membrane ruffling. However, the specific type I enzymes associated with the production of PI(4,5)P2 for the specific cellular processes have not been rigorously defined. Murine PI4P5K type Ibeta (mPIP5K-Ibeta) was implicated in receptor mediated endocytosis through the isolation of a truncated and inactive form of the enzyme that blocked the ligand-dependent downregulation of the colony-stimulating factor-1 receptor. The present study shows that enforced expression of mPIP5K-Ibeta in 293T cells resulted in the accumulation of large vesicles that were linked to an endosomal pathway. Similar results were obtained after the expression of the PI(4,5)P2-binding pleckstrin homology (PH) domain of phospholipase-Cdelta (PLC-delta). Analysis of the conserved domains of mPIP5K-Ibeta led to the identification of dimerization domains in the N- and C-terminal regions. Enforced expression of the individual dimerization domains interfered with the proper subcellular localization of mPIP5K-Ibeta and the PLC-delta-PH domain and blocked the accumulation of the endocytic vesicles induced by these proteins. In addition to regulating early steps in endocytosis, these results suggest that mPIP5K-Ibeta acts through PI(4,5)P2 to regulate endosomal trafficking and/or fusion.

Download full-text PDF

Source

Publication Analysis

Top Keywords

phosphatidylinositol 4-phosphate
12
type ibeta
8
endosomal pathway
8
receptor mediated
8
mediated endocytosis
8
enforced expression
8
dimerization domains
8
phosphatidylinositol
5
mpip5k-ibeta
5
overexpression murine
4

Similar Publications

Phospholipase C epsilon 1 as a therapeutic target in cardiovascular diseases.

J Adv Res

January 2025

School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China. Electronic address:

Background: Phospholipase C epsilon 1 (PLCε1) can hydrolyze phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-4-phosphate at the plasma membrane and perinuclear membrane in the cardiovascular system, producing lipid-derived second messengers. These messengers are considered prominent triggers for various signal transduction processes. Notably, diverse cardiac phenotypes have been observed in cardiac-specific and global Plce1 knockout mice under conditions of pathological stress.

View Article and Find Full Text PDF

Background: Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges.

View Article and Find Full Text PDF

Autophagosomes coated in situ with nanodots act as personalized cancer vaccines.

Nat Nanotechnol

January 2025

Department of Urology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Autophagosome cancer vaccines can promote cross-presentation of multiple tumour antigens and induce cross-reactive T cell responses. However, so far, there is no effective method for obtaining a highly immunogenic autophagosomal cancer vaccine because autophagosomes, once formed, quickly fuse with lysosomes and cannot easily escape from cells. Here we report a functional TiNX nanodot that caps the autophagosome membrane lipid phosphatidylinositol-4-phosphate, blocking the fusion of autophagosomes with lysosomes and producing stable nanodot-coated autophagosomes in tumours.

View Article and Find Full Text PDF

Comprehensive analysis of proteomic and biochemical responses of Daphnia magna to short-term exposure to polystyrene microplastic particles.

Ecotoxicol Environ Saf

December 2024

Center for Environmental Safety Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea. Electronic address:

Microplastic (MP) represent a pervasive and escalating threat to aquatic ecosystems, impacting organisms from cellular to population levels. To investigate the immediate molecular impacts of MP exposure, we exposed Daphnia magna, a keystone species in freshwater ecosystems, to polystyrene microplastic particles (5 μm, 5 μg/L) for 48 h. Through proteomic and biochemical analyses, we identified extensive disruptions in key physiological pathways.

View Article and Find Full Text PDF

is the etiologic agent of trichomoniasis, one of the most common non-viral sexually transmitted infections globally. Our previous work reported the role of phosphatidylinositol 4,5-bisphosphates (PIP) signaling in the actin-dependent pathogenicity of . This study further demonstrated that iron transiently regulated phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) proteostasis and its complex formation with an active ADP ribosylation factor Arf220, facilitating co-trafficking to the plasma membrane, crucial for PIP production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!