Delayed abscission and shorter Internodes correlate with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato.

Plant Physiol

Soybean Genomics Improvement Laboratory, United States Department of Agriculture, Building 006, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA.

Published: March 2002

Stable transformation of tomato (Lycopersicon esculentum cv Ailsa Craig) plants with a construct containing the antisense sequence for the receiver domain and 3'-untranslated portion of the tomato ethylene receptor (LeETR1) under the control of an enhanced cauliflower mosaic virus 35S promoter resulted in some expected and unexpected phenotypes. In addition to reduced LeETR1 transcript levels, the two most consistently observed phenotypes in the transgenic lines were delayed abscission and reduced plant size. Fruit coloration and softening were essentially unaffected, and all the seedlings from first generation seed displayed a normal triple response to ethylene. Two independent lines with a single copy of the transgene and reduced LeETR1 transcript accumulation were selected for detailed phenotypic analysis of second generation (R1) plants. Delayed abscission, shorter internode length, and reduced auxin movement all correlated with the presence of the transgene and the degree of reduced LeETR1 transcript accumulation. No significant differences were noted for fruit coloration or fruit softening on R1 plants and all seedlings from R1 and R2 seed displayed a normal triple response. LeETR2 transcript accumulation was only slightly reduced in the R1 plants compared with azygous plants, and LeETR3 (NR) transcript levels appeared to be unaffected by the transgene. We propose that ethylene signal transduction occurs through parallel paths that partially intersect to regulate shared ethylene responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC152210PMC
http://dx.doi.org/10.1104/pp.010782DOI Listing

Publication Analysis

Top Keywords

leetr1 transcript
16
delayed abscission
12
reduced leetr1
12
transcript accumulation
12
abscission shorter
8
ethylene receptor
8
receptor leetr1
8
transcript levels
8
fruit coloration
8
seed displayed
8

Similar Publications

Delayed abscission and shorter Internodes correlate with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato.

Plant Physiol

March 2002

Soybean Genomics Improvement Laboratory, United States Department of Agriculture, Building 006, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA.

Stable transformation of tomato (Lycopersicon esculentum cv Ailsa Craig) plants with a construct containing the antisense sequence for the receiver domain and 3'-untranslated portion of the tomato ethylene receptor (LeETR1) under the control of an enhanced cauliflower mosaic virus 35S promoter resulted in some expected and unexpected phenotypes. In addition to reduced LeETR1 transcript levels, the two most consistently observed phenotypes in the transgenic lines were delayed abscission and reduced plant size. Fruit coloration and softening were essentially unaffected, and all the seedlings from first generation seed displayed a normal triple response to ethylene.

View Article and Find Full Text PDF

The plant hormone ethylene is involved in many developmental processes, including fruit ripening, abscission, senescence, and leaf epinasty. Tomato contains a family of ethylene receptors, designated LeETR1, LeETR2, NR, LeETR4, and LeETR5, with homology to the Arabidopsis ETR1 ethylene receptor. Transgenic plants with reduced LeETR4 gene expression display multiple symptoms of extreme ethylene sensitivity, including severe epinasty, enhanced flower senescence, and accelerated fruit ripening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!