Context: T-lymphocyte migration through the blood-brain barrier is a central event in the process of lesion formation in multiple sclerosis (MS).
Objectives: To assess the ability of lymphocytes derived from the peripheral blood of patients with clinically active and inactive MS to migrate across an artificial model of the blood-brain barrier and to elucidate the molecular mechanisms involved in such a process.
Design: We developed an in vitro model of lymphocyte migration using a Boyden chamber coated with a monolayer of human brain microvascular endothelial cells.
Results: The rates of migration of lymphocytes obtained from patients with acutely relapsing and active secondary progressive MS was significantly increased compared with those obtained from healthy controls and patients with inactive secondary progressive disease. Ribonuclease protection assays and enzyme-linked immunosorbent assays indicated that monocyte chemoattractant protein 1 and interleukin 8 were the major chemokines produced by brain endothelial cells grown under the culture conditions used for the migration assays. The rate of migration of the MS lymphocytes could be inhibited by 60% with an antimonocyte chemoattractant protein 1 monoclonal antibody, indicating a functional role for this chemokine in the migration process. In agreement with previous reports, we found that the tissue inhibitor of metalloproteinase 1, a matrix metalloproteinase inhibitor, also reduced migration of MS lymphocytes by 50%.
Conclusions: The results demonstrate an increased migration rate of MS T lymphocytes across the brain endothelium barrier and that such migration is dependent on chemokine monocyte chemoattractant protein 1 and on matrix metalloproteinases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archneur.59.3.391 | DOI Listing |
Potassium channels regulate membrane potential, calcium flux, cellular activation and effector functions of adaptive and innate immune cells. The voltage-activated Kv1.3 channel is an important regulator of T cell-mediated autoimmunity and microglia-mediated neuroinflammation.
View Article and Find Full Text PDFFront Immunol
January 2025
Laboratorio de Pediatria Clinica (LIM36), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.
Introduction: Chemokines and their receptors are essential for leukocyte migration to several tissues, including human milk. Here, we evaluated the homing of T and B lymphocyte subsets to breast milk in response to ongoing respiratory infections in the nursing infant.
Methods: Blood and mature milk were collected from healthy mothers of nurslings with respiratory infections (Group I) and from healthy mothers of healthy nurslings (Group C).
Clin Transl Med
February 2025
The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China.
To investigate the potential mechanisms underlying neutrophil extracellular traps (NETs) confer ferroptosis resistance and CD8(+) T cell inhibition in lung adenocarcinoma (LUAD). By the intravenous injection of LLC cells into the tail vein, a LUAD mouse model was created. Phorbol-12-myristate-13-acetate (PMA) stimulated neutrophils to facilitate NETs formation and combined with NETs inhibitor DNase I to explore NETs mechanism on LLC cell proliferation, migration, ferroptosis resistance, and CD8(+) T cell activity.
View Article and Find Full Text PDFAutoimmunity
December 2025
Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!