A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Formation of a 1-bicyclo[1.1.1]pentyl anion and an experimental determination of the acidity and C-H bond dissociation energy of 3-tert-butylbicyclo[1.1.1]pentane. | LitMetric

Decarboxylation of 1-bicyclo[1.1.1]pentanecarboxylate anion does not afford 1-bicyclo[1.1.1]pentyl anion as previously assumed. Instead, a ring-opening isomerization which ultimately leads to 1,4-pentadien-2-yl anion takes place. A 1-bicyclo[1.1.1]pentyl anion was prepared nevertheless via the fluoride-induced desilylation of 1-tert-butyl-3-(trimethylsilyl)bicyclo[1.1.1]pentane. The electron affinity of 3-tert-butyl-1-bicyclo[1.1.1]pentyl radical (14.8 plus minus 3.2 kcal/mol) was measured by bracketing, and the acidity of 1-tert-butylbicyclo[1.1.1]pentane (408.5 +/- 0.9) was determined by the DePuy kinetic method. These values are well-reproduced by G2 and G3 calculations and can be combined in a thermodynamic cycle to provide a bridgehead C-H bond dissociation energy (BDE) of 109.7 +/- 3.3 kcal/mol for 1-tert-butylbicyclo[1.1.1]pentane. This bond energy is the strongest tertiary C-H bond to be measured, is much larger than the corresponding bond in isobutane (96.5 +/- 0.4 kcal/mol), and is more typical of an alkene or aromatic compound. The large BDE can be explained in terms of hybridization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0121890DOI Listing

Publication Analysis

Top Keywords

1-bicyclo[111]pentyl anion
12
c-h bond
12
bond dissociation
8
dissociation energy
8
+/- kcal/mol
8
anion
5
bond
5
formation 1-bicyclo[111]pentyl
4
anion experimental
4
experimental determination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!