A new strategy for caging proteins regulated by kinases.

J Am Chem Soc

Department of Anatomy and Structural Biology, The Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

Published: March 2002

A strategy has been developed for caging proteins that are endogenously regulated by phosphorylation. A key phosphorylatable serine in cofilin, an F-actin cleaving protein, was replaced with a nonphosphorylatable cysteine. The latter conversion ensures that the protein is no longer regulated by endogenous protein kinases. The cysteine residue was subsequently covalently modified with a negatively charged caging moiety, which electrostatically mimics the natural serine phosphate present in the inactive wild-type protein. Photoremoval of the cage generates an active protein, which cannot be switched off by endogenous protein kinases. Caged cofilin, and its irradiated counterpart, display the anticipated F-actin depolymerization and severing activities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja017592lDOI Listing

Publication Analysis

Top Keywords

caging proteins
8
endogenous protein
8
protein kinases
8
protein
6
strategy caging
4
proteins regulated
4
regulated kinases
4
kinases strategy
4
strategy developed
4
developed caging
4

Similar Publications

A RNA Dodecahedral Cage Inside a Human Virus Plays a Dual Biological Role in Virion Assembly and Genome Release Control.

J Mol Biol

December 2024

Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain. Electronic address:

Human rhinoviruses (RV) are among the most frequent human pathogens. As major causative agents of common colds they originate serious socioeconomic problems and huge expenditure every year, and they also exacerbate severe respiratory diseases. No anti-rhinoviral drugs or vaccines are available so far.

View Article and Find Full Text PDF

Particle-based reaction-diffusion models offer a high-resolution alternative to the continuum reaction-diffusion approach, capturing the discrete and volume-excluding nature of molecules undergoing stochastic dynamics. These methods are thus uniquely capable of simulating explicit self-assembly of particles into higher-order structures like filaments, spherical cages, or heterogeneous macromolecular complexes, which are ubiquitous across living systems and in materials design. The disadvantage of these high-resolution methods is their increased computational cost.

View Article and Find Full Text PDF

Blended phytogenics as an alternative to growth-promoting antibiotics in newly weaned piglets.

Trop Anim Health Prod

December 2024

Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil.

The research aimed to evaluate the effects of a commercial blend of phytogenic compounds on the digestibility, antioxidant system, intestinal microbiota, and performance of weaned piglets. Two experiments compared three treatments (diets): control, zinc bacitracin (300 g/t) and blended phytogenic compounds (400 g/t). The first experiment analised of digestibility of the dry matter, organic matter, crude protein, crude energy and metabolizable energy, in addition to blood parameters and gut microbiota in 15 piglets commercial cross-bred, weaned at 28 days of age, castrated males, weighing 9.

View Article and Find Full Text PDF

Although methods for Cys-specific bioconjugation and functionalization of proteins have been developed and widely utilized in biomolecule engineering and therapeutic development, reagents for this purpose are generally designed to accomplish bioconjugation only. Consequently, additional clickable groups must be attached to these reagents to accomplish functionalization. Herein, we describe a new, simple, dual-performing bioconjugation-functionalization reagent, VMeTz, which possesses an electron-withdrawing tetrazine (Tz) substituted vinyl (V) moiety to serve as both a Michael receptor for selective conjugation with Cys and a site for click with TCO derivatives to introduce functionality.

View Article and Find Full Text PDF

Highly Rigid, Yet Conformationally Adaptable, Bisporphyrin -Cage Receptors Afford Outstanding Binding Affinities, Chelate Cooperativities, and Substrate Selectivities.

J Am Chem Soc

December 2024

Nanostructured Molecular Systems and Materials group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain.

If we aim to develop efficient synthetic models of protein receptors and enzymes, we must understand the relationships of intra- and intermolecular interactions between hosts and guests and how they mutually influence their conformational energy landscape so as to adapt to each other to maximize binding energies and enhance substrate selectivities. Here, we introduce a novel design of cofacial (Zn)bisporphyrin cages based on dynamic imine bonding, which is synthetically simple, but at the same time highly robust and versatile, affording receptors composed of only -hybridized C and N atoms. The high structural rigidity of these cages renders them ideal hosts for ditopic molecules that can fit into the cavity and bind to both metal centers, leading to association constants as high as 10 M in chloroform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!