Virulent bacteria are able to sense temperature changes and respond by modifying the expression of--among others--genes that code for virulence factors. The chromatin-associated protein H-NS has been shown to play a role in the thermomodulation of virulence factor expression. In addition to H-NS, proteins of the Hha/YmoA family have also been identified in different enterobacteria as participating in the thermoregulation of some virulence factors. For one of these proteins, the Hha protein, it has been shown that it interacts with H-NS, and both proteins form a nucleoid-protein complex responsible for the thermoregulation of, at least, E. coli hemolysin. The presence of genes coding for homologues of both proteins on some conjugative plasmids and their relation to thermoregulation suggests that this complex could also play a role in the regulation of plasmid transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1078/1438-4221-00149 | DOI Listing |
Arch Microbiol
January 2025
Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University.
MRSA's resistance poses a global health challenge. This study investigates lysine succinylation in MRSA using proteomics and bioinformatics approaches to uncover metabolic and virulence mechanisms, with the goal of identifying novel therapeutic targets. Mass spectrometry and bioinformatics analyses mapped the MRSA succinylome, identifying 8 048 succinylation sites on 1 210 proteins.
View Article and Find Full Text PDFVirulence
December 2025
Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2025
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. Electronic address:
Yersinia ruckeri is known to cause enteric red mouth disease (ERM) in channel catfish (Ictalurus punctatus). This study first established a model of Y. ruckeri-induced intestinal inflammation in channel catfish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!