One of the main concepts in toxicology and risk assessment is the identification of compounds with the least toxicity, gaining increased understanding of the underlying mechanisms of efficacy and toxicity so as to accelerate the early selection of compounds for development. For this purpose, "cutting-edge" technologies, such as flow cytometry (FC), laser scanning cytometry (LSC) and confocal laser scanning microscopy (CLSM), have proved to be valuable tools. FC, LSC and CLSM have been successfully applied in a wide range of areas within toxicology and research including genetics, reproduction, dermatology, pathology and target organ toxicity. The scope of this paper is to give a short overview of the usefulness of the different laser applications. Specific examples of the impact of these technologies will be presented or can be found in the references. Flow cytometry methods have been successfully applied in immunophenotyping, micronuclei scoring, polyploidy determination, apoptosis and cell cycle evaluation, cell proliferation and quantification. A three-parameter FC method for the analysis of testicular toxicity has also been established as an alternative to traditional histopathological methods. This method allows a large number of cells to be analysed in a short time and provides quantitative values to evaluate testicular damage in the rat. Laser scanning cytometry has been used in our unit for rat blood cell immunophenotyping, tumor proliferation, apoptosis and cell cycle analysis on minipig and rat skin and cardiac cells identification. The wide range of applications that can be applied with the LSC shows the enormous potential of this technology in research and development. Confocal laser scanning microscope was used in our laboratory, in collaboration with the research department, to investigate the mechanisms underlying hepatic lesions found in dogs, to detect fibrinogen influx into rat lung, to explore the mechanism of eye toxicity and to quantify dopaminergic fibers in brain sections. Integrating these technologies within discovery pathology allowed us to understand disease processes with respect to their development and subsequent consequences. It contributes to descriptive pathologic diagnostic and allows a productive interaction with research and development. These technologies offer a range of novel applications and have been shown to be useful tools in terms of specificity, sensitivity, reliability, rapidity and quantification. Expertise in cutting-edge technologies, pathology and cell and molecular biology is essential to a successful and flexible interaction across all therapeutic areas in drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/01926230252824662 | DOI Listing |
Transl Vis Sci Technol
January 2025
Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA.
Purpose: To compare the assessment of clinically relevant retinal and choroidal lesions as well as optic nerve pathologies using a novel three-wavelength ultra-widefield (UWF) scanning laser ophthalmoscope with established retinal imaging techniques for ophthalmoscopic imaging.
Methods: Eighty eyes with a variety of retinal and choroidal lesions were assessed on the same time point using Topcon color fundus photography (CFP) montage, Optos red/green (RG), Heidelberg SPECTRALIS MultiColor 55-color montage (MCI), and novel Optos red/green/blue (RGB). Paired images of the optic nerve, retinal, or choroidal lesions were initially diagnosed based on CFP imaging.
Brief Bioinform
November 2024
Department of Biology, University at Albany, SUNY, 1400 Washington Ave, Albany, NY 12222, United States.
The accuracy of assigning fluorophore identity and abundance, known as spectral unmixing, in biological fluorescence microscopy images remains a significant challenge due to the substantial overlap in emission spectra among fluorophores. In traditional laser scanning confocal spectral microscopy, fluorophore information is acquired by recording emission spectra with a single combination of discrete excitation wavelengths. However, organic fluorophores possess characteristic excitation spectra in addition to their unique emission spectral signatures.
View Article and Find Full Text PDFBio Protoc
January 2025
Laboratory of Protein Translation and Fungal Pathogenesis, Regional Centre for Biotechnology, Faridabad, India.
, labeled an urgent threat by the CDC, shows significant resilience to treatments and disinfectants via biofilm formation, complicating treatment/disease management. The inconsistencies in biofilm architecture observed across studies hinder the understanding of its role in pathogenesis. Our novel in vitro technique cultivates biofilms on gelatin-coated coverslips, reliably producing multilayer biofilms with extracellular polymeric substances (EPS).
View Article and Find Full Text PDFBiomater Sci
January 2025
National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin , chlorin and phthalocyanine, as those for radical polymerization in the transparency window of biotissues.
View Article and Find Full Text PDFTurk J Pharm Sci
January 2025
İstanbul Technical University Faculty of Chemical-Metallurgical Engineering, Department of Chemical Engineering, İstanbul, Türkiye.
Objectives: This study focuses on both the formulation of bio-based microspheres containing fampridine for the treatment of multiple sclerosis and provides an alternative to the commercially available product (Fampyra 10 mg, Biogen).
Materials And Methods: The encapsulation of fampridine was achieved using polyvinyl alcohol (PVA) and sodium alginate (Na-Alg) polymers. Glutaraldehyde (GA) and hydrochloric acid (HCI) were used as crosslinking agents.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!